Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Differential evolution based on node strength

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F18%3A86100215" target="_blank" >RIV/61989100:27740/18:86100215 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989100:27240/18:86100215

  • Výsledek na webu

    <a href="https://www.inderscienceonline.com/doi/abs/10.1504/IJBIC.2018.090072" target="_blank" >https://www.inderscienceonline.com/doi/abs/10.1504/IJBIC.2018.090072</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1504/IJBIC.2018.090072" target="_blank" >10.1504/IJBIC.2018.090072</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Differential evolution based on node strength

  • Popis výsledku v původním jazyce

    In this paper, three novel algorithms for optimisation based on the differential evolution algorithm are devised. The main idea behind those algorithms stems from the observation that differential evolution dynamics can be modelled via complex networks. In our approach, the individuals of the population are modelled by the nodes and the relationships between them by the directed lines of the graph. Subsequent analysis of non-trivial topological features further influence the process of parent selection in the mutation step and replace the traditional approach which is not reflecting the complex relationships between individuals in the population during evolution. This approach represents a general framework which can be applied to various kinds of differential evolution algorithms. We have incorporated this framework with the three well-performing variants of differential evolution algorithms to demonstrate the effectiveness of our contribution with respect to the convergence rate. Two well-known benchmark sets (including 49 functions) are used to evaluate the performance of the proposed algorithms. Experimental results and statistical analysis indicate that the enhanced algorithms perform better or at least comparable to their original versions.

  • Název v anglickém jazyce

    Differential evolution based on node strength

  • Popis výsledku anglicky

    In this paper, three novel algorithms for optimisation based on the differential evolution algorithm are devised. The main idea behind those algorithms stems from the observation that differential evolution dynamics can be modelled via complex networks. In our approach, the individuals of the population are modelled by the nodes and the relationships between them by the directed lines of the graph. Subsequent analysis of non-trivial topological features further influence the process of parent selection in the mutation step and replace the traditional approach which is not reflecting the complex relationships between individuals in the population during evolution. This approach represents a general framework which can be applied to various kinds of differential evolution algorithms. We have incorporated this framework with the three well-performing variants of differential evolution algorithms to demonstrate the effectiveness of our contribution with respect to the convergence rate. Two well-known benchmark sets (including 49 functions) are used to evaluate the performance of the proposed algorithms. Experimental results and statistical analysis indicate that the enhanced algorithms perform better or at least comparable to their original versions.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA15-06700S" target="_blank" >GA15-06700S: Nekonvenční řízení komplexních systémů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Bio-Inspired Computation

  • ISSN

    1758-0366

  • e-ISSN

  • Svazek periodika

    11

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    12

  • Strana od-do

    34-45

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85042934914