Differential Evolution Enhanced by the Closeness Centrality: Initial Study
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F15%3A86096008" target="_blank" >RIV/61989100:27240/15:86096008 - isvavai.cz</a>
Výsledek na webu
<a href="http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7312095&tag=1" target="_blank" >http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7312095&tag=1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/INCoS.2015.65" target="_blank" >10.1109/INCoS.2015.65</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Differential Evolution Enhanced by the Closeness Centrality: Initial Study
Popis výsledku v původním jazyce
The closeness centrality can be considered as the natural distance metric between pairs of nodes in connected graphs. This paper is the initial study of the influence of the closeness centrality of the graph built on the basis of the differential evolution dynamics to the differential evolution convergence rate. Our algorithm is based on the principle that the differential evolution creates graph for each generation, where nodes represent the individuals and edges the relationships between them. For each individual the closeness centrality is computed and on the basis of its value the individuals are selected in the mutation step of the algorithm. The higher value of the closeness centrality means the higher probability to become the parent in the mutation step. This enhancement has been incorporated in the classical differential evolution and a set of 21 well-known benchmark functions has been used to test and evaluate the performance of the proposed enhancement of the differential ev
Název v anglickém jazyce
Differential Evolution Enhanced by the Closeness Centrality: Initial Study
Popis výsledku anglicky
The closeness centrality can be considered as the natural distance metric between pairs of nodes in connected graphs. This paper is the initial study of the influence of the closeness centrality of the graph built on the basis of the differential evolution dynamics to the differential evolution convergence rate. Our algorithm is based on the principle that the differential evolution creates graph for each generation, where nodes represent the individuals and edges the relationships between them. For each individual the closeness centrality is computed and on the basis of its value the individuals are selected in the mutation step of the algorithm. The higher value of the closeness centrality means the higher probability to become the parent in the mutation step. This enhancement has been incorporated in the classical differential evolution and a set of 21 well-known benchmark functions has been used to test and evaluate the performance of the proposed enhancement of the differential ev
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-06700S" target="_blank" >GA15-06700S: Nekonvenční řízení komplexních systémů</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Intelligent Networking and Collaborative Systems INCoS-2015 : 7th International Conference : proceedings : September 2-4, 2015, Taipei, Tchaj-wan
ISBN
978-1-4673-7694-5
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
346-353
Název nakladatele
IEEE
Místo vydání
New York
Místo konání akce
Taipei
Datum konání akce
2. 9. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—