Differential evolution dynamics analysis by complex networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F15%3A86095528" target="_blank" >RIV/61989100:27240/15:86095528 - isvavai.cz</a>
Výsledek na webu
<a href="http://link.springer.com/article/10.1007/s00500-015-1883-2" target="_blank" >http://link.springer.com/article/10.1007/s00500-015-1883-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00500-015-1883-2" target="_blank" >10.1007/s00500-015-1883-2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Differential evolution dynamics analysis by complex networks
Popis výsledku v původním jazyce
Differential evolution is a simple yet efficient heuristic originally designed for global optimization over continuous spaces that has been used in many research areas. The question how to improve its performance is still popular and during the years, many successful methods dealing with optimal setting or hybridization of the control parameters were proposed. In this paper, we propose a novel approach based on modeling of the differential evolution dynamics by complex networks. In each generation, theindividuals are mapped to the nodes and the relationships between them are modeled by the edges of the graph. Thanks to this simple visualization, the interconnection between the differential evolution convergence speed and the weighted clustering coefficients has been revealed. As a consequence, we have focused on the parents selection in the mutation step where the individuals are not selected randomly as usual but on the basis of their weighted clustering coefficients. Our enhancement
Název v anglickém jazyce
Differential evolution dynamics analysis by complex networks
Popis výsledku anglicky
Differential evolution is a simple yet efficient heuristic originally designed for global optimization over continuous spaces that has been used in many research areas. The question how to improve its performance is still popular and during the years, many successful methods dealing with optimal setting or hybridization of the control parameters were proposed. In this paper, we propose a novel approach based on modeling of the differential evolution dynamics by complex networks. In each generation, theindividuals are mapped to the nodes and the relationships between them are modeled by the edges of the graph. Thanks to this simple visualization, the interconnection between the differential evolution convergence speed and the weighted clustering coefficients has been revealed. As a consequence, we have focused on the parents selection in the mutation step where the individuals are not selected randomly as usual but on the basis of their weighted clustering coefficients. Our enhancement
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-06700S" target="_blank" >GA15-06700S: Nekonvenční řízení komplexních systémů</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Soft computing
ISSN
1432-7643
e-ISSN
—
Svazek periodika
Neuveden
Číslo periodika v rámci svazku
Neuveden
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
1-15
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-84944576775