Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Differential evolution dynamics analysis by complex networks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F15%3A86095528" target="_blank" >RIV/61989100:27240/15:86095528 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://link.springer.com/article/10.1007/s00500-015-1883-2" target="_blank" >http://link.springer.com/article/10.1007/s00500-015-1883-2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00500-015-1883-2" target="_blank" >10.1007/s00500-015-1883-2</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Differential evolution dynamics analysis by complex networks

  • Popis výsledku v původním jazyce

    Differential evolution is a simple yet efficient heuristic originally designed for global optimization over continuous spaces that has been used in many research areas. The question how to improve its performance is still popular and during the years, many successful methods dealing with optimal setting or hybridization of the control parameters were proposed. In this paper, we propose a novel approach based on modeling of the differential evolution dynamics by complex networks. In each generation, theindividuals are mapped to the nodes and the relationships between them are modeled by the edges of the graph. Thanks to this simple visualization, the interconnection between the differential evolution convergence speed and the weighted clustering coefficients has been revealed. As a consequence, we have focused on the parents selection in the mutation step where the individuals are not selected randomly as usual but on the basis of their weighted clustering coefficients. Our enhancement

  • Název v anglickém jazyce

    Differential evolution dynamics analysis by complex networks

  • Popis výsledku anglicky

    Differential evolution is a simple yet efficient heuristic originally designed for global optimization over continuous spaces that has been used in many research areas. The question how to improve its performance is still popular and during the years, many successful methods dealing with optimal setting or hybridization of the control parameters were proposed. In this paper, we propose a novel approach based on modeling of the differential evolution dynamics by complex networks. In each generation, theindividuals are mapped to the nodes and the relationships between them are modeled by the edges of the graph. Thanks to this simple visualization, the interconnection between the differential evolution convergence speed and the weighted clustering coefficients has been revealed. As a consequence, we have focused on the parents selection in the mutation step where the individuals are not selected randomly as usual but on the basis of their weighted clustering coefficients. Our enhancement

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA15-06700S" target="_blank" >GA15-06700S: Nekonvenční řízení komplexních systémů</a><br>

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2015

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Soft computing

  • ISSN

    1432-7643

  • e-ISSN

  • Svazek periodika

    Neuveden

  • Číslo periodika v rámci svazku

    Neuveden

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    15

  • Strana od-do

    1-15

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-84944576775