A quantum inspired differential evolution algorithm for automatic clustering of real life datasets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10254650" target="_blank" >RIV/61989100:27240/24:10254650 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s11042-023-15704-3" target="_blank" >https://link.springer.com/article/10.1007/s11042-023-15704-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11042-023-15704-3" target="_blank" >10.1007/s11042-023-15704-3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A quantum inspired differential evolution algorithm for automatic clustering of real life datasets
Popis výsledku v původním jazyce
In recent years, Quantum Inspired Metaheuristic algorithms have emerged to be promising due to their efficiency, robustness and faster computational capability. In this paper, a novel Quantum Inspired Differential Evolution (QIDE) algorithm has been presented for automatic clustering of unlabeled datasets. In case of automatic clustering, the datasets have been clustered into optimal number of groups on the run without any apriori knowledge of the datasets. In this work, the proposed algorithm has been compared with other two quantum inspired algorithms, viz., Fast Quantum Inspired Evolutionary Clustering Algorithm (FQEA) and Quantum Evolutionary Algorithm for Data Clustering (QEAC), a Classical Differential Evolution (CDE) algorithm with different mutation probabilities and an Improved Differential Evolution (IDE) algorithm. The experiments have been conducted on six real life publicly available datasets to identify the optimal number of clusters. By introducing some concepts of quantum gates, the proposed algorithm not only achieves good convergence speed but also provides better results than other competitive algorithms. In addition, Sobol's sensitivity analysis has been conducted for tuning the parameters of the proposed algorithm.
Název v anglickém jazyce
A quantum inspired differential evolution algorithm for automatic clustering of real life datasets
Popis výsledku anglicky
In recent years, Quantum Inspired Metaheuristic algorithms have emerged to be promising due to their efficiency, robustness and faster computational capability. In this paper, a novel Quantum Inspired Differential Evolution (QIDE) algorithm has been presented for automatic clustering of unlabeled datasets. In case of automatic clustering, the datasets have been clustered into optimal number of groups on the run without any apriori knowledge of the datasets. In this work, the proposed algorithm has been compared with other two quantum inspired algorithms, viz., Fast Quantum Inspired Evolutionary Clustering Algorithm (FQEA) and Quantum Evolutionary Algorithm for Data Clustering (QEAC), a Classical Differential Evolution (CDE) algorithm with different mutation probabilities and an Improved Differential Evolution (IDE) algorithm. The experiments have been conducted on six real life publicly available datasets to identify the optimal number of clusters. By introducing some concepts of quantum gates, the proposed algorithm not only achieves good convergence speed but also provides better results than other competitive algorithms. In addition, Sobol's sensitivity analysis has been conducted for tuning the parameters of the proposed algorithm.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Multimedia Tools and Applications
ISSN
1380-7501
e-ISSN
1573-7721
Svazek periodika
83
Číslo periodika v rámci svazku
2024
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
30
Strana od-do
—
Kód UT WoS článku
001010496600003
EID výsledku v databázi Scopus
—