Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A quantum inspired differential evolution algorithm for automatic clustering of real life datasets

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10254650" target="_blank" >RIV/61989100:27240/24:10254650 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s11042-023-15704-3" target="_blank" >https://link.springer.com/article/10.1007/s11042-023-15704-3</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11042-023-15704-3" target="_blank" >10.1007/s11042-023-15704-3</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A quantum inspired differential evolution algorithm for automatic clustering of real life datasets

  • Popis výsledku v původním jazyce

    In recent years, Quantum Inspired Metaheuristic algorithms have emerged to be promising due to their efficiency, robustness and faster computational capability. In this paper, a novel Quantum Inspired Differential Evolution (QIDE) algorithm has been presented for automatic clustering of unlabeled datasets. In case of automatic clustering, the datasets have been clustered into optimal number of groups on the run without any apriori knowledge of the datasets. In this work, the proposed algorithm has been compared with other two quantum inspired algorithms, viz., Fast Quantum Inspired Evolutionary Clustering Algorithm (FQEA) and Quantum Evolutionary Algorithm for Data Clustering (QEAC), a Classical Differential Evolution (CDE) algorithm with different mutation probabilities and an Improved Differential Evolution (IDE) algorithm. The experiments have been conducted on six real life publicly available datasets to identify the optimal number of clusters. By introducing some concepts of quantum gates, the proposed algorithm not only achieves good convergence speed but also provides better results than other competitive algorithms. In addition, Sobol&apos;s sensitivity analysis has been conducted for tuning the parameters of the proposed algorithm.

  • Název v anglickém jazyce

    A quantum inspired differential evolution algorithm for automatic clustering of real life datasets

  • Popis výsledku anglicky

    In recent years, Quantum Inspired Metaheuristic algorithms have emerged to be promising due to their efficiency, robustness and faster computational capability. In this paper, a novel Quantum Inspired Differential Evolution (QIDE) algorithm has been presented for automatic clustering of unlabeled datasets. In case of automatic clustering, the datasets have been clustered into optimal number of groups on the run without any apriori knowledge of the datasets. In this work, the proposed algorithm has been compared with other two quantum inspired algorithms, viz., Fast Quantum Inspired Evolutionary Clustering Algorithm (FQEA) and Quantum Evolutionary Algorithm for Data Clustering (QEAC), a Classical Differential Evolution (CDE) algorithm with different mutation probabilities and an Improved Differential Evolution (IDE) algorithm. The experiments have been conducted on six real life publicly available datasets to identify the optimal number of clusters. By introducing some concepts of quantum gates, the proposed algorithm not only achieves good convergence speed but also provides better results than other competitive algorithms. In addition, Sobol&apos;s sensitivity analysis has been conducted for tuning the parameters of the proposed algorithm.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Multimedia Tools and Applications

  • ISSN

    1380-7501

  • e-ISSN

    1573-7721

  • Svazek periodika

    83

  • Číslo periodika v rámci svazku

    2024

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    30

  • Strana od-do

  • Kód UT WoS článku

    001010496600003

  • EID výsledku v databázi Scopus