Novel quantum inspired approaches for automatic clustering of gray level images using Particle Swarm Optimization, Spider Monkey Optimization and Ageist Spider Monkey Optimization algorithms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F20%3A10243745" target="_blank" >RIV/61989100:27240/20:10243745 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1568494619308221?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1568494619308221?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.asoc.2019.106040" target="_blank" >10.1016/j.asoc.2019.106040</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Novel quantum inspired approaches for automatic clustering of gray level images using Particle Swarm Optimization, Spider Monkey Optimization and Ageist Spider Monkey Optimization algorithms
Popis výsledku v původním jazyce
This paper is intended to identify the optimal number of clusters automatically from an image dataset using some quantum behaved nature inspired meta-heuristic algorithms. Due to the lack of sufficient information, it is difficult to identify the appropriate number of clusters from a dataset, which has enthused the researchers to solve the problem of automatic clustering and to open up a new era of cluster analysis with the help of several natures inspired meta-heuristic algorithms. In this paper, three quantum inspired meta-heuristic techniques, viz., Quantum Inspired Particle Swarm Optimization (QIPSO), Quantum Inspired Spider Monkey Optimization (QISMO) and Quantum Inspired Ageist Spider Monkey Optimization (QIASMO), have been proposed. A comparison has been outlined between the quantum inspired algorithms with their corresponding classical counterparts. The efficiency of the quantum inspired algorithms has been established over their corresponding classical counterparts with regards to fitness, mean, standard deviation, standard errors of fitness, convergence curves (for benchmarked mathematical functions) and computational time. Finally, the results of two statistical superiority tests, viz., t- test and Friedman test have been provided to prove the superiority of the proposed methods. The superiority of the proposed methods has been established on five publicly available real life image datasets, five Berkeley image datasets of different dimensions and four benchmark mathematical functions both visually and quantitatively. (C) 2019 Elsevier B.V.
Název v anglickém jazyce
Novel quantum inspired approaches for automatic clustering of gray level images using Particle Swarm Optimization, Spider Monkey Optimization and Ageist Spider Monkey Optimization algorithms
Popis výsledku anglicky
This paper is intended to identify the optimal number of clusters automatically from an image dataset using some quantum behaved nature inspired meta-heuristic algorithms. Due to the lack of sufficient information, it is difficult to identify the appropriate number of clusters from a dataset, which has enthused the researchers to solve the problem of automatic clustering and to open up a new era of cluster analysis with the help of several natures inspired meta-heuristic algorithms. In this paper, three quantum inspired meta-heuristic techniques, viz., Quantum Inspired Particle Swarm Optimization (QIPSO), Quantum Inspired Spider Monkey Optimization (QISMO) and Quantum Inspired Ageist Spider Monkey Optimization (QIASMO), have been proposed. A comparison has been outlined between the quantum inspired algorithms with their corresponding classical counterparts. The efficiency of the quantum inspired algorithms has been established over their corresponding classical counterparts with regards to fitness, mean, standard deviation, standard errors of fitness, convergence curves (for benchmarked mathematical functions) and computational time. Finally, the results of two statistical superiority tests, viz., t- test and Friedman test have been provided to prove the superiority of the proposed methods. The superiority of the proposed methods has been established on five publicly available real life image datasets, five Berkeley image datasets of different dimensions and four benchmark mathematical functions both visually and quantitatively. (C) 2019 Elsevier B.V.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_027%2F0008463" target="_blank" >EF16_027/0008463: Věda bez hranic</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Soft Computing
ISSN
1568-4946
e-ISSN
—
Svazek periodika
88
Číslo periodika v rámci svazku
March
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
29
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85077094785