PSO and DE based Novel Quantum Inspired Automatic Clustering Techniques
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F17%3A10238746" target="_blank" >RIV/61989100:27240/17:10238746 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/17:10238746
Výsledek na webu
<a href="http://ieeexplore.ieee.org/document/8234522/authors" target="_blank" >http://ieeexplore.ieee.org/document/8234522/authors</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICRCICN.2017.8234522" target="_blank" >10.1109/ICRCICN.2017.8234522</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
PSO and DE based Novel Quantum Inspired Automatic Clustering Techniques
Popis výsledku v původním jazyce
Clustering, a well-known technique, is used to divide a data set into number of groups, called clusters. Differential evolution and particle swarm optimization are robust, fast and very effective search techniques. To increase computational capability, two different quantum inspired meta-heuristics for automatic clustering, have been proposed here. An application of quantum inspired techniques has been demonstrated for automatic clustering of image data sets. These techniques are able to find optimal number of clusters "on the run" for an image data sets. As the comparative research, a comparison has been made between the proposed techniques and their conventional counterparts for four images data set. Effectiveness of the proposed techniques has been exhibited against the fitness value, standard deviation and mean of the fitness, standard error and computational time. Finally, two separate statistical superiority test, referred to as t-test and Friedman test have been performed to prove the superiority the of proposed approaches in their favor.
Název v anglickém jazyce
PSO and DE based Novel Quantum Inspired Automatic Clustering Techniques
Popis výsledku anglicky
Clustering, a well-known technique, is used to divide a data set into number of groups, called clusters. Differential evolution and particle swarm optimization are robust, fast and very effective search techniques. To increase computational capability, two different quantum inspired meta-heuristics for automatic clustering, have been proposed here. An application of quantum inspired techniques has been demonstrated for automatic clustering of image data sets. These techniques are able to find optimal number of clusters "on the run" for an image data sets. As the comparative research, a comparison has been made between the proposed techniques and their conventional counterparts for four images data set. Effectiveness of the proposed techniques has been exhibited against the fitness value, standard deviation and mean of the fitness, standard error and computational time. Finally, two separate statistical superiority test, referred to as t-test and Friedman test have been performed to prove the superiority the of proposed approaches in their favor.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
3rd International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN) : proceedings : November 3-5, 2017, Calcutta, India
ISBN
978-1-5386-1931-5
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
6
Strana od-do
285-290
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Kalkata
Datum konání akce
3. 11. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000426611300052