Simulated Annealing Based Quantum Inspired Automatic Clustering Technique
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F18%3A10241898" target="_blank" >RIV/61989100:27240/18:10241898 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007%2F978-3-319-74690-6_8" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-319-74690-6_8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-74690-6_8" target="_blank" >10.1007/978-3-319-74690-6_8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Simulated Annealing Based Quantum Inspired Automatic Clustering Technique
Popis výsledku v původním jazyce
Cluster analysis is a popular technique whose aim is to segregate a set of data points into groups, called clusters. Simulated Annealing (SA) is a popular meta-heuristic inspired by the annealing process used in metallurgy, useful in solving complex optimization problems. In this paper, the use of the Quantum Computing (QC) and SA is explored to design Quantum Inspired Simulated Annealing technique, which can be applied to compute optimum number of clusters for image clustering. Experimental results over a number of images endorse the effectiveness of the proposed technique pertaining to fitness value, convergence time, accuracy, robustness, and standard error. The paper also reports the computation results of a statistical superiority test, known as t-test. An experimental judgement to the classical technique has also be presented, which eventually demonstrates that the proposed technique outperforms the other. (C) 2018, Springer International Publishing AG.
Název v anglickém jazyce
Simulated Annealing Based Quantum Inspired Automatic Clustering Technique
Popis výsledku anglicky
Cluster analysis is a popular technique whose aim is to segregate a set of data points into groups, called clusters. Simulated Annealing (SA) is a popular meta-heuristic inspired by the annealing process used in metallurgy, useful in solving complex optimization problems. In this paper, the use of the Quantum Computing (QC) and SA is explored to design Quantum Inspired Simulated Annealing technique, which can be applied to compute optimum number of clusters for image clustering. Experimental results over a number of images endorse the effectiveness of the proposed technique pertaining to fitness value, convergence time, accuracy, robustness, and standard error. The paper also reports the computation results of a statistical superiority test, known as t-test. An experimental judgement to the classical technique has also be presented, which eventually demonstrates that the proposed technique outperforms the other. (C) 2018, Springer International Publishing AG.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in Intelligent Systems and Computing. Volume 723
ISBN
978-3-319-74689-0
ISSN
2194-5357
e-ISSN
2194-5365
Počet stran výsledku
9
Strana od-do
73-81
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Káhira
Datum konání akce
22. 2. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—