Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Quantum inspired automatic clustering algorithms: A comparative study of genetic algorithm and bat algorithm

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F20%3A10246920" target="_blank" >RIV/61989100:27240/20:10246920 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.degruyter.com/document/doi/10.1515/9783110670707/html" target="_blank" >https://www.degruyter.com/document/doi/10.1515/9783110670707/html</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1515/9783110670707-005" target="_blank" >10.1515/9783110670707-005</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Quantum inspired automatic clustering algorithms: A comparative study of genetic algorithm and bat algorithm

  • Popis výsledku v původním jazyce

    This article is intendant to present two automatic clustering techniques of image datasets, based on quantum inspired framework with two different metaheuristic algorithms, viz., Genetic Algorithm (GA) and Bat Algorithm (BA). This work provides two novel techniques to automatically find out the optimum clusters present in images and also provides a comparative study between the Quantum Inspired Genetic Algorithm (QIGA) and Quantum Inspired Bat Algorithm (QIBA). A comparison is also presented between these quantum inspired algorithms with their analogous classical counterparts. During the experiment, it was perceived that the quantum inspired techniques beat their classical techniques. The comparison was prepared based on the mean values of the fitness, standard deviation, standard error of the computed fitness of the cluster validity index and the optimal computational time. Finally, the supremacy of the algorithms was verified in terms of the p-value which was computed by t-test (statistical superiority test) and ranking of the proposed procedures was produced by the Friedman test. During the computation, the betterment of the fitness was judge by a well-known cluster validity index, named, DB index. The experiments were carried out on four Berkeley image and two real life grey scale images. (C) 2020 Walter de Gruyter GmbH, Berlin/Boston. All rights reserved.

  • Název v anglickém jazyce

    Quantum inspired automatic clustering algorithms: A comparative study of genetic algorithm and bat algorithm

  • Popis výsledku anglicky

    This article is intendant to present two automatic clustering techniques of image datasets, based on quantum inspired framework with two different metaheuristic algorithms, viz., Genetic Algorithm (GA) and Bat Algorithm (BA). This work provides two novel techniques to automatically find out the optimum clusters present in images and also provides a comparative study between the Quantum Inspired Genetic Algorithm (QIGA) and Quantum Inspired Bat Algorithm (QIBA). A comparison is also presented between these quantum inspired algorithms with their analogous classical counterparts. During the experiment, it was perceived that the quantum inspired techniques beat their classical techniques. The comparison was prepared based on the mean values of the fitness, standard deviation, standard error of the computed fitness of the cluster validity index and the optimal computational time. Finally, the supremacy of the algorithms was verified in terms of the p-value which was computed by t-test (statistical superiority test) and ranking of the proposed procedures was produced by the Friedman test. During the computation, the betterment of the fitness was judge by a well-known cluster validity index, named, DB index. The experiments were carried out on four Berkeley image and two real life grey scale images. (C) 2020 Walter de Gruyter GmbH, Berlin/Boston. All rights reserved.

Klasifikace

  • Druh

    C - Kapitola v odborné knize

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název knihy nebo sborníku

    Quantum Machine Learning

  • ISBN

    978-3-11-067070-7

  • Počet stran výsledku

    26

  • Strana od-do

    89-114

  • Počet stran knihy

    131

  • Název nakladatele

    De Gruyter

  • Místo vydání

    Berlin

  • Kód UT WoS kapitoly