Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Quantum Spider Monkey Optimization (QSMO) Algorithm for Automatic Gray-Scale Image Clustering

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F19%3A10241744" target="_blank" >RIV/61989100:27240/19:10241744 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8554872" target="_blank" >https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8554872</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICACCI.2018.8554872" target="_blank" >10.1109/ICACCI.2018.8554872</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Quantum Spider Monkey Optimization (QSMO) Algorithm for Automatic Gray-Scale Image Clustering

  • Popis výsledku v původním jazyce

    In automatic image clustering, high homogeneity of each cluster is always desired. The increase in number of thresholds in gray scale image segmentation/clustering poses various challenges. Recent times have witnessed the growing popularity of swarm intelligence based algorithms in the field of image segmentation. The Spider Monkey Optimization (SMO) algorithm is a notable example, which is motivated by the intelligent behavior of the spider monkeys. The SMO is broadly categorized as a fission-fusion social structure based intelligent algorithm. The original version of the algorithm as well as its variants have been successfully used in several optimization problems. The current work proposes a quantum version of SMO algorithm which takes recourse to quantum encoding of its population along with quantum variants of the intrinsic operations. The basic concepts and principles of quantum mechanics allows QMSO to explore the power of computing. In QMSO, qubits designated chromosomes operate to drive the solution toward better convergence incorporating rotation gate in Hilbert hyperspace. A fitness function associated with maximum distance between cluster centers have been introduced. An application of the proposed QSMO algorithm is demonstrated on the determination of automatic clusters from real life images. A comparative study with the performance of the classical SMO shows the efficacy of the proposed QSMO algorithm.

  • Název v anglickém jazyce

    Quantum Spider Monkey Optimization (QSMO) Algorithm for Automatic Gray-Scale Image Clustering

  • Popis výsledku anglicky

    In automatic image clustering, high homogeneity of each cluster is always desired. The increase in number of thresholds in gray scale image segmentation/clustering poses various challenges. Recent times have witnessed the growing popularity of swarm intelligence based algorithms in the field of image segmentation. The Spider Monkey Optimization (SMO) algorithm is a notable example, which is motivated by the intelligent behavior of the spider monkeys. The SMO is broadly categorized as a fission-fusion social structure based intelligent algorithm. The original version of the algorithm as well as its variants have been successfully used in several optimization problems. The current work proposes a quantum version of SMO algorithm which takes recourse to quantum encoding of its population along with quantum variants of the intrinsic operations. The basic concepts and principles of quantum mechanics allows QMSO to explore the power of computing. In QMSO, qubits designated chromosomes operate to drive the solution toward better convergence incorporating rotation gate in Hilbert hyperspace. A fitness function associated with maximum distance between cluster centers have been introduced. An application of the proposed QSMO algorithm is demonstrated on the determination of automatic clusters from real life images. A comparative study with the performance of the classical SMO shows the efficacy of the proposed QSMO algorithm.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    2018 International Conference on Advances in Computing, Communications and Informatics, ICACCI 2018

  • ISBN

    978-1-5386-5314-2

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    1869-1874

  • Název nakladatele

    IEEE

  • Místo vydání

    Piscataway

  • Místo konání akce

    Bengalúr

  • Datum konání akce

    19. 9. 2018

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000455682100317