Quantum inspired meta-heuristic approaches for automatic clustering of colour images
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F21%3A10248801" target="_blank" >RIV/61989100:27240/21:10248801 - isvavai.cz</a>
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/10.1002/int.22494" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/int.22494</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/int.22494" target="_blank" >10.1002/int.22494</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Quantum inspired meta-heuristic approaches for automatic clustering of colour images
Popis výsledku v původním jazyce
In this article, quantum inspired incarnations of two swarm based meta-heuristic algorithms, namely, Crow Search Optimization Algorithm and Intelligent Crow Search Optimization Algorithm have been proposed for automatic clustering of colour images. The performance and effectiveness of the proposed algorithms have been judged by experimenting on 15 Berkeley images and five publicly available real life images of different sizes. The validity of the proposed algorithms has been justified with the help of four different cluster validity indices, namely, Pakhira Bandyopadhyay Maulik, I-index, Silhouette and CS-measure. Moreover, Sobol's sensitivity analysis has been performed to tune the parameters of the proposed algorithms. The experimental results prove the superiority of proposed algorithms with respect to optimal fitness, computational time, convergence rate, accuracy, robustness, t-test and Friedman test. Finally, the efficacy of the proposed algorithms has been proved with the help of quantitative evaluation of segmentation evaluation metrics.
Název v anglickém jazyce
Quantum inspired meta-heuristic approaches for automatic clustering of colour images
Popis výsledku anglicky
In this article, quantum inspired incarnations of two swarm based meta-heuristic algorithms, namely, Crow Search Optimization Algorithm and Intelligent Crow Search Optimization Algorithm have been proposed for automatic clustering of colour images. The performance and effectiveness of the proposed algorithms have been judged by experimenting on 15 Berkeley images and five publicly available real life images of different sizes. The validity of the proposed algorithms has been justified with the help of four different cluster validity indices, namely, Pakhira Bandyopadhyay Maulik, I-index, Silhouette and CS-measure. Moreover, Sobol's sensitivity analysis has been performed to tune the parameters of the proposed algorithms. The experimental results prove the superiority of proposed algorithms with respect to optimal fitness, computational time, convergence rate, accuracy, robustness, t-test and Friedman test. Finally, the efficacy of the proposed algorithms has been proved with the help of quantitative evaluation of segmentation evaluation metrics.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Intelligent Systems
ISSN
0884-8173
e-ISSN
—
Svazek periodika
36
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
50
Strana od-do
—
Kód UT WoS článku
000658908200001
EID výsledku v databázi Scopus
2-s2.0-85107567991