Evolutionary identification of hidden chaotic attractors
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F16%3A86100472" target="_blank" >RIV/61989100:27240/16:86100472 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.engappai.2015.12.002" target="_blank" >http://dx.doi.org/10.1016/j.engappai.2015.12.002</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.engappai.2015.12.002" target="_blank" >10.1016/j.engappai.2015.12.002</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evolutionary identification of hidden chaotic attractors
Popis výsledku v původním jazyce
In this participation we discuss the possibility of mutual fusion of evolutionary algorithms and deterministic chaos. As demonstrated in previous research papers, evolutionary algorithms are capable of chaotic system control, identification or synthesis and vice versa, chaos can be observed in the evolutionary dynamics. More exactly, in this paper there is numerically demonstrated possible solution of the question whether identification of so-called basin of attraction for hidden attractor can be done by evolutionary algorithms. Hidden attractors are a special kind of attractors, that are hidden in the system structure and if ignored (undiscovered), then can cause serious damages, as already observed in the real world. The research presented here is bivalent. At first it shows, that evolutionary algorithms are able to identify presence of hidden attractors in the system, but also it can be extended to study an existence of hidden attractors in the evolutionary algorithms dynamics. All numerical simulations are demonstrated on Chua's chaotic attractor that contains an example of hidden attractor and at the end there are discussed discrete systems (synthesized by evolution) that likely exhibit hidden attractors, too.
Název v anglickém jazyce
Evolutionary identification of hidden chaotic attractors
Popis výsledku anglicky
In this participation we discuss the possibility of mutual fusion of evolutionary algorithms and deterministic chaos. As demonstrated in previous research papers, evolutionary algorithms are capable of chaotic system control, identification or synthesis and vice versa, chaos can be observed in the evolutionary dynamics. More exactly, in this paper there is numerically demonstrated possible solution of the question whether identification of so-called basin of attraction for hidden attractor can be done by evolutionary algorithms. Hidden attractors are a special kind of attractors, that are hidden in the system structure and if ignored (undiscovered), then can cause serious damages, as already observed in the real world. The research presented here is bivalent. At first it shows, that evolutionary algorithms are able to identify presence of hidden attractors in the system, but also it can be extended to study an existence of hidden attractors in the evolutionary algorithms dynamics. All numerical simulations are demonstrated on Chua's chaotic attractor that contains an example of hidden attractor and at the end there are discussed discrete systems (synthesized by evolution) that likely exhibit hidden attractors, too.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-06700S" target="_blank" >GA15-06700S: Nekonvenční řízení komplexních systémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE
ISSN
0952-1976
e-ISSN
—
Svazek periodika
50
Číslo periodika v rámci svazku
únor 2016
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
9
Strana od-do
159-167
Kód UT WoS článku
000373410000014
EID výsledku v databázi Scopus
2-s2.0-84960127489