Comparison of K-means clustering initialization approaches with brute-force initialization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F17%3A10236274" target="_blank" >RIV/61989100:27240/17:10236274 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/17:10236274
Výsledek na webu
<a href="https://link.springer.com/content/pdf/10.1007%2F978-981-10-3409-1_7.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007%2F978-981-10-3409-1_7.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-981-10-3409-1_7" target="_blank" >10.1007/978-981-10-3409-1_7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparison of K-means clustering initialization approaches with brute-force initialization
Popis výsledku v původním jazyce
Data clustering is a basic data mining discipline that has been in center of interest of many research groups. This paper describes the formulation of the basic NP-hard optimization problem in data clustering which is approximated by many heuristic methods. The famous k-means clustering algorithm and its initialization is of a particular interest in this paper. A summary of the k-means variants and various initialization strategies is presented. Many initialization heuristics tend to search only through a fraction of the initial centroid space. The final clustering result is usually compared only to some other heuristic strategy. In this paper we compare the result to the solution provided by a brute-force experiment. Many instances of the k-means can be executed in parallel on the high performance computing infrastructure, which makes brute-force search for the best initial centroids possible. Solutions obtained by exact solvers [2, 11] of the clustering problem are used for verification of the brute-force approach. We present progress of the function optimization during the experiment for several benchmark data sets, including sparse document-term matrices. © Springer Nature Singapore Pte Ltd. 2017.
Název v anglickém jazyce
Comparison of K-means clustering initialization approaches with brute-force initialization
Popis výsledku anglicky
Data clustering is a basic data mining discipline that has been in center of interest of many research groups. This paper describes the formulation of the basic NP-hard optimization problem in data clustering which is approximated by many heuristic methods. The famous k-means clustering algorithm and its initialization is of a particular interest in this paper. A summary of the k-means variants and various initialization strategies is presented. Many initialization heuristics tend to search only through a fraction of the initial centroid space. The final clustering result is usually compared only to some other heuristic strategy. In this paper we compare the result to the solution provided by a brute-force experiment. Many instances of the k-means can be executed in parallel on the high performance computing infrastructure, which makes brute-force search for the best initial centroids possible. Solutions obtained by exact solvers [2, 11] of the clustering problem are used for verification of the brute-force approach. We present progress of the function optimization during the experiment for several benchmark data sets, including sparse document-term matrices. © Springer Nature Singapore Pte Ltd. 2017.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in Intelligent Systems and Computing. Volume 567
ISBN
978-981-10-3408-4
ISSN
2194-5357
e-ISSN
neuvedeno
Počet stran výsledku
12
Strana od-do
103-114
Název nakladatele
Springer
Místo vydání
Singapur
Místo konání akce
Kalkata
Datum konání akce
12. 8. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—