Detector Of Steganographyk Images With The Application Of Artifical Neural Network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F17%3A10236830" target="_blank" >RIV/61989100:27240/17:10236830 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/17:10236830
Výsledek na webu
<a href="https://www.sgem.org/index.php/call-for-papers/conference-proceedings-sgem" target="_blank" >https://www.sgem.org/index.php/call-for-papers/conference-proceedings-sgem</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Detector Of Steganographyk Images With The Application Of Artifical Neural Network
Popis výsledku v původním jazyce
Introduction Steganography can be used for illegal activities. It is very important to be prepared. To detect steganography images we have counter-technique known as steganalysis. There are different types of steganalysis, depending on if the original artifact (cover) is known or not. In terms of practical use, most important are methods of “blind steganalysis”, that can be applied to image files and because we do not have the original cover for comparison. This article deals with the application of neural networks on the issues of steganalysis. The aim is to improve the detection capability of conventional steganalytical tools with using of artificial neural network and several improvements. In our work is important to understand the behavior of the targeted steganography algorithm. Then we can use it is weaknesses to increase the detection capability. In our case we are focus on steganography algorithm OutGuess2.0. We analyze the ability of the detector, which utilizes calibration process and blockiness calculation to detect the presence of steganography message in suspected image. We verify if the deployment of neural network improves this detection.
Název v anglickém jazyce
Detector Of Steganographyk Images With The Application Of Artifical Neural Network
Popis výsledku anglicky
Introduction Steganography can be used for illegal activities. It is very important to be prepared. To detect steganography images we have counter-technique known as steganalysis. There are different types of steganalysis, depending on if the original artifact (cover) is known or not. In terms of practical use, most important are methods of “blind steganalysis”, that can be applied to image files and because we do not have the original cover for comparison. This article deals with the application of neural networks on the issues of steganalysis. The aim is to improve the detection capability of conventional steganalytical tools with using of artificial neural network and several improvements. In our work is important to understand the behavior of the targeted steganography algorithm. Then we can use it is weaknesses to increase the detection capability. In our case we are focus on steganography algorithm OutGuess2.0. We analyze the ability of the detector, which utilizes calibration process and blockiness calculation to detect the presence of steganography message in suspected image. We verify if the deployment of neural network improves this detection.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20202 - Communication engineering and systems
Návaznosti výsledku
Projekt
<a href="/cs/project/TF01000091" target="_blank" >TF01000091: Bezpečnost mobilních zařízení a komunikace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
SGEM 2017 : proceedings of the 17th International Multidisciplinary Scientific GeoConference : June 29 – July 5, 2017, Albena, Bulgaria. Volume 17. Issue 54
ISBN
978-619-7408-11-9
ISSN
1314-2704
e-ISSN
neuvedeno
Počet stran výsledku
8
Strana od-do
255-262
Název nakladatele
STEF92 Technology Ltd.
Místo vydání
Sofia
Místo konání akce
Albena
Datum konání akce
29. 6. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—