Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

New approach to steganography detection via steganalysis framework

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F17%3A10236988" target="_blank" >RIV/61989100:27240/17:10236988 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://iiti-conf.org/" target="_blank" >http://iiti-conf.org/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-68321-8_51" target="_blank" >10.1007/978-3-319-68321-8_51</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    New approach to steganography detection via steganalysis framework

  • Popis výsledku v původním jazyce

    The aim is to propose basic steganalytical tool that can use multiple methods of analysis. We describe two detection methods that were imple-mented. These methods include improved detection capability than convention-al steganalytical tools thanks to use of artificial neural network and several oth-er innovative improvements. In our work is important to understand the beha-vior of the targeted steganography algorithm. Then we can use its weaknesses to increase the detection capability. We analyze prepared stegogrammes by ap-plication of several conventional algorithms such as image difference. Then we can determine where are the most suitable areas of image for embedding the message by steganography algorithm. Two of our plug-ins are focused on steganography algorithms Steghide, OutGuess2.0 and F5. These algorithms are open source and easy accessible, so the risk of their abuse is high. We use several approaches, such as calibration process and blockiness calculation to detect the presence of steganography mes-sage in suspected image. Calibration process is designed for creation of calibra-tion image, that represents the original cover work and for comparison to sus-pected image. Blockiness calculation serves us as a statistical metric that react to the presence of secret message. Next we deploy the artificial neural network to improve detection capability. Second plug-in utilizes a detection method that is based on analysis of inner structures of JPEG format. This detection method uses overall quality calcula-tion based on quantization tables and Huffman coding table. These informations are processed by neural network that is able to decide whatever the suspicious file contains embedded data and which steganography algorithm was used to create this file with tested confidence larger than 93% and for detection capabil-ity up to 99%.

  • Název v anglickém jazyce

    New approach to steganography detection via steganalysis framework

  • Popis výsledku anglicky

    The aim is to propose basic steganalytical tool that can use multiple methods of analysis. We describe two detection methods that were imple-mented. These methods include improved detection capability than convention-al steganalytical tools thanks to use of artificial neural network and several oth-er innovative improvements. In our work is important to understand the beha-vior of the targeted steganography algorithm. Then we can use its weaknesses to increase the detection capability. We analyze prepared stegogrammes by ap-plication of several conventional algorithms such as image difference. Then we can determine where are the most suitable areas of image for embedding the message by steganography algorithm. Two of our plug-ins are focused on steganography algorithms Steghide, OutGuess2.0 and F5. These algorithms are open source and easy accessible, so the risk of their abuse is high. We use several approaches, such as calibration process and blockiness calculation to detect the presence of steganography mes-sage in suspected image. Calibration process is designed for creation of calibra-tion image, that represents the original cover work and for comparison to sus-pected image. Blockiness calculation serves us as a statistical metric that react to the presence of secret message. Next we deploy the artificial neural network to improve detection capability. Second plug-in utilizes a detection method that is based on analysis of inner structures of JPEG format. This detection method uses overall quality calcula-tion based on quantization tables and Huffman coding table. These informations are processed by neural network that is able to decide whatever the suspicious file contains embedded data and which steganography algorithm was used to create this file with tested confidence larger than 93% and for detection capabil-ity up to 99%.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20202 - Communication engineering and systems

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Advances in Intelligent Systems and Computing. Volume 679

  • ISBN

    978-3-319-68320-1

  • ISSN

    2194-5357

  • e-ISSN

    2194-5365

  • Počet stran výsledku

    8

  • Strana od-do

    1-8

  • Název nakladatele

    Springer

  • Místo vydání

    Cham

  • Místo konání akce

    Varna

  • Datum konání akce

    14. 9. 2017

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku