Steganalysis by means of Artificial Neural Networks: Steganography detection in JPEG files by means of Artifical Neural Networks using Huffman coding
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F12%3A43868933" target="_blank" >RIV/70883521:28140/12:43868933 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Steganalysis by means of Artificial Neural Networks: Steganography detection in JPEG files by means of Artifical Neural Networks using Huffman coding
Popis výsledku v původním jazyce
This book is focused on the revealing of hidden information present in multimedia files, mainly in pictures. This hidden information (messages) is coded in by means of steganography, which is an additional method of cryptography. Steganography provides better security for messages and the detection of such a message is not easy. The main goal of this research is a classification by means of artificial neural networks aimed at reducing false positive classification results to a minimum. To accomplish themain goal, a new model of image pre-processing was proposed. This pre-processing model is based on the Huffman coding, which is the main part of the lossless compression algorithm used in JPEG images. The Huffman coding can be easily transformed into the training sets for the artificial neural network, which is used as a classifier. The type of used artificial neural network was feed forward with supervision and Levenberg-Marquardt training algorithm. The results from performed simulati
Název v anglickém jazyce
Steganalysis by means of Artificial Neural Networks: Steganography detection in JPEG files by means of Artifical Neural Networks using Huffman coding
Popis výsledku anglicky
This book is focused on the revealing of hidden information present in multimedia files, mainly in pictures. This hidden information (messages) is coded in by means of steganography, which is an additional method of cryptography. Steganography provides better security for messages and the detection of such a message is not easy. The main goal of this research is a classification by means of artificial neural networks aimed at reducing false positive classification results to a minimum. To accomplish themain goal, a new model of image pre-processing was proposed. This pre-processing model is based on the Huffman coding, which is the main part of the lossless compression algorithm used in JPEG images. The Huffman coding can be easily transformed into the training sets for the artificial neural network, which is used as a classifier. The type of used artificial neural network was feed forward with supervision and Levenberg-Marquardt training algorithm. The results from performed simulati
Klasifikace
Druh
B - Odborná kniha
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED2.1.00%2F03.0089" target="_blank" >ED2.1.00/03.0089: Centrum bezpečnostních, informačních a pokročilých technologií (CEBIA-Tech)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
ISBN
978-3-659-30172-8
Počet stran knihy
132
Název nakladatele
Lap Lambert Academic Publishing
Místo vydání
Saarbrücken
Kód UT WoS knihy
—