On innovative stochastic renewal process models for exact unavailability quantification of highly reliable systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F17%3A10238396" target="_blank" >RIV/61989100:27240/17:10238396 - isvavai.cz</a>
Výsledek na webu
<a href="http://journals.sagepub.com/eprint/6TgfVM3xpJCSGBjqQ292/full" target="_blank" >http://journals.sagepub.com/eprint/6TgfVM3xpJCSGBjqQ292/full</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1177/1748006X17717617" target="_blank" >10.1177/1748006X17717617</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On innovative stochastic renewal process models for exact unavailability quantification of highly reliable systems
Popis výsledku v původním jazyce
In previous research, we developed original methodology for high-performance computing which enables exact unavailability quantification of a real maintained highly reliable system containing highly reliable components with both preventive and corrective maintenance. Whereas the original methodology was developed for systems containing components with exponential lifetime distribution, the main objective of this article is generalization of the methodology by applying stochastic alternating renewal process models, so as to be used for unavailability quantification of systems containing arbitrary components without any restrictions on the form of the probability distribution assigned to time to failure and repair duration, that is, aging components will be allowed. For this purpose, a recurrent linear integral equation for point unavailability is derived and proved. This innovative equation is particularly eligible for numerical implementation because it does not contain any renewal density, that is, it is more effective for unavailability calculation than the corresponding equation resulting from the traditional alternating renewal process theory, which contains renewal density. The new equation undergoes the process of discretization which results in numeric formula to quantify desired unavailability function. The numerical process is elaborated for all previously intended stochastic component models. Found component unavailability functions are used to quantify unavailability of a complex maintained system. System is represented by the use of directed acyclic graph, which proved to be very effective system representation to quantify reliability of highly reliable systems.
Název v anglickém jazyce
On innovative stochastic renewal process models for exact unavailability quantification of highly reliable systems
Popis výsledku anglicky
In previous research, we developed original methodology for high-performance computing which enables exact unavailability quantification of a real maintained highly reliable system containing highly reliable components with both preventive and corrective maintenance. Whereas the original methodology was developed for systems containing components with exponential lifetime distribution, the main objective of this article is generalization of the methodology by applying stochastic alternating renewal process models, so as to be used for unavailability quantification of systems containing arbitrary components without any restrictions on the form of the probability distribution assigned to time to failure and repair duration, that is, aging components will be allowed. For this purpose, a recurrent linear integral equation for point unavailability is derived and proved. This innovative equation is particularly eligible for numerical implementation because it does not contain any renewal density, that is, it is more effective for unavailability calculation than the corresponding equation resulting from the traditional alternating renewal process theory, which contains renewal density. The new equation undergoes the process of discretization which results in numeric formula to quantify desired unavailability function. The numerical process is elaborated for all previously intended stochastic component models. Found component unavailability functions are used to quantify unavailability of a complex maintained system. System is represented by the use of directed acyclic graph, which proved to be very effective system representation to quantify reliability of highly reliable systems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Risk and Reliability
ISSN
1748-006X
e-ISSN
—
Svazek periodika
231
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
617-627
Kód UT WoS článku
000415837100001
EID výsledku v databázi Scopus
2-s2.0-85034587629