Advanced computing methodology for general highly reliable systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F17%3A10238398" target="_blank" >RIV/61989100:27240/17:10238398 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Advanced computing methodology for general highly reliable systems
Popis výsledku v původním jazyce
In our previous research we developed new methodology for high-performance computing which enables exact unavailability quantification of a real maintained highly reliable system containing highly reliable components with both preventive and corrective maintenance. Main objective of this paper is to generalize the original methodology so that to be used for unavailability quantification of a system with ageing input components with optional distributions of the time to a failure, as Weibull, log-normal, etc. For this purpose new findings in renewal theory (alternating renewal models) are demonstrated and derived. For computing implementation we derived an innovative equation to calculate unavailability function, not containing the renewal density, which is more effective than the corresponding equation resulting from the classic alternating renewal theory in which renewal density is included. The new equation undergoes the process of discretization which results in numeric formula to quantify desired unavailability function. This numerical process is elaborated for all previously intended stochastic component models. Found component unavailability functions are used to quantify unavailability of a complex maintained system. System is represented by the use of directed acyclic graph, which proved to be very effective system representation for computing highly reliable systems.
Název v anglickém jazyce
Advanced computing methodology for general highly reliable systems
Popis výsledku anglicky
In our previous research we developed new methodology for high-performance computing which enables exact unavailability quantification of a real maintained highly reliable system containing highly reliable components with both preventive and corrective maintenance. Main objective of this paper is to generalize the original methodology so that to be used for unavailability quantification of a system with ageing input components with optional distributions of the time to a failure, as Weibull, log-normal, etc. For this purpose new findings in renewal theory (alternating renewal models) are demonstrated and derived. For computing implementation we derived an innovative equation to calculate unavailability function, not containing the renewal density, which is more effective than the corresponding equation resulting from the classic alternating renewal theory in which renewal density is included. The new equation undergoes the process of discretization which results in numeric formula to quantify desired unavailability function. This numerical process is elaborated for all previously intended stochastic component models. Found component unavailability functions are used to quantify unavailability of a complex maintained system. System is represented by the use of directed acyclic graph, which proved to be very effective system representation for computing highly reliable systems.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Risk, reliability and safety: innovating theory and practice: proceedings of the 26th European Safety and Reliability Conference, ESREL 2016, Glasgow, Scotland, 25-29 September 2016
ISBN
978-1-138-02997-2
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
8
Strana od-do
1466-1473
Název nakladatele
CRC Press
Místo vydání
Boca Raton
Místo konání akce
Glasgow
Datum konání akce
25. 9. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000414164700207