Predicting clinical status of patients after an acute ischemic stroke using random forests
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F17%3A10238451" target="_blank" >RIV/61989100:27240/17:10238451 - isvavai.cz</a>
Výsledek na webu
<a href="http://ieeexplore.ieee.org/abstract/document/8024330/" target="_blank" >http://ieeexplore.ieee.org/abstract/document/8024330/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/DT.2017.8024330" target="_blank" >10.1109/DT.2017.8024330</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Predicting clinical status of patients after an acute ischemic stroke using random forests
Popis výsledku v původním jazyce
According to the World Health Organization, a stroke has been the second most common cause of death in the world in the last 15 years. An ischemic stroke accounts for almost 80 % of all cases. The University Hospital Ostrava in the Czech Republic collects various information about patients who were transported there after suffering from an acute ischemic stroke, such as the affected brain hemisphere, duration of medical procedure or presence of hypertension. The objective of this paper was finding a model which would be able to predict patient's clinical outcome three months after an ischemic stroke based on the collected data. It was also desirable to analyse importance of the considered variables. For this purpose, the random forests algorithm was used. To avoid biased variable importance, we used an alternative approach to the random forests which uses the conditional inference trees. Firstly, the commonly used modified Rankin Scale was used for describing the patient's outcome three months after a stroke. Secondly, only two values for the clinical status were considered, by meaning they correspond with the values 0-3 and 4-6 of modified Rankin Scale. The best performance was achieved with the second approach to description of the clinical outcome with the calculated classification accuracy 86 %. © 2017 IEEE.
Název v anglickém jazyce
Predicting clinical status of patients after an acute ischemic stroke using random forests
Popis výsledku anglicky
According to the World Health Organization, a stroke has been the second most common cause of death in the world in the last 15 years. An ischemic stroke accounts for almost 80 % of all cases. The University Hospital Ostrava in the Czech Republic collects various information about patients who were transported there after suffering from an acute ischemic stroke, such as the affected brain hemisphere, duration of medical procedure or presence of hypertension. The objective of this paper was finding a model which would be able to predict patient's clinical outcome three months after an ischemic stroke based on the collected data. It was also desirable to analyse importance of the considered variables. For this purpose, the random forests algorithm was used. To avoid biased variable importance, we used an alternative approach to the random forests which uses the conditional inference trees. Firstly, the commonly used modified Rankin Scale was used for describing the patient's outcome three months after a stroke. Secondly, only two values for the clinical status were considered, by meaning they correspond with the values 0-3 and 4-6 of modified Rankin Scale. The best performance was achieved with the second approach to description of the clinical outcome with the calculated classification accuracy 86 %. © 2017 IEEE.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the International Conference on Information and Digital Technologies, IDT 2017
ISBN
978-1-5090-5688-0
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
6
Strana od-do
417-422
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Žilina
Datum konání akce
5. 7. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000426916900066