Comparing the Performance of Regression Models, Random Forests and Neural Networks for Stroke Patients' outcome Prediction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F19%3A10242762" target="_blank" >RIV/61989100:27240/19:10242762 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/8813335" target="_blank" >https://ieeexplore.ieee.org/document/8813335</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/DT.2019.8813335" target="_blank" >10.1109/DT.2019.8813335</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparing the Performance of Regression Models, Random Forests and Neural Networks for Stroke Patients' outcome Prediction
Popis výsledku v původním jazyce
The paper aimed to explore the performance of three classification methods which were used for the prediction of the clinical outcome of patients after an acute ischemic stroke. We performed the analysis with the logistic regression, the random forests algorithm and the multilayer neural networks. Each method can be evaluated with respect to its flexibility, model interpretability or prediction accuracy. In this paper, we focused on the investigation of properties of the methods with respect to our major problem, i.e. prediction of stroke patients' outcome.For several years, the University Hospital Ostrava in the Czech Republic has been systematically collecting various information about patients who were transported there after suffering from an acute ischemic stroke. Therefore, efficient statistical analysis of the collected data is a vital part of the research. Naturally, the primary interest lies in the analysis of factors affecting the clinical status of patients three months after stroke which was evaluated with widely-used modified Rankin Scale. For the analysis, dichotomized clinical status was used as a target variable. By meaning, the values correspond with the values 0-3 and 4-6 of the modified Rankin Scale.All three models provided satisfactory results. The final binary logistic regression model reached the overall classification accuracy 87%, the random forests models had classification accuracy almost 90% and the multilayer neural networks almost 80% accuracy. The paper also compared the performance with other measures, e.g. well-known sensitivity, specificity or precision. (C) 2019 IEEE.
Název v anglickém jazyce
Comparing the Performance of Regression Models, Random Forests and Neural Networks for Stroke Patients' outcome Prediction
Popis výsledku anglicky
The paper aimed to explore the performance of three classification methods which were used for the prediction of the clinical outcome of patients after an acute ischemic stroke. We performed the analysis with the logistic regression, the random forests algorithm and the multilayer neural networks. Each method can be evaluated with respect to its flexibility, model interpretability or prediction accuracy. In this paper, we focused on the investigation of properties of the methods with respect to our major problem, i.e. prediction of stroke patients' outcome.For several years, the University Hospital Ostrava in the Czech Republic has been systematically collecting various information about patients who were transported there after suffering from an acute ischemic stroke. Therefore, efficient statistical analysis of the collected data is a vital part of the research. Naturally, the primary interest lies in the analysis of factors affecting the clinical status of patients three months after stroke which was evaluated with widely-used modified Rankin Scale. For the analysis, dichotomized clinical status was used as a target variable. By meaning, the values correspond with the values 0-3 and 4-6 of the modified Rankin Scale.All three models provided satisfactory results. The final binary logistic regression model reached the overall classification accuracy 87%, the random forests models had classification accuracy almost 90% and the multilayer neural networks almost 80% accuracy. The paper also compared the performance with other measures, e.g. well-known sensitivity, specificity or precision. (C) 2019 IEEE.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the International Conference on Information and Digital Technologies 2019, IDT 2019
ISBN
978-1-72811-401-9
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
543-550
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Žilina, Slovakia
Datum konání akce
25. 6. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—