Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Comparing the Performance of Regression Models, Random Forests and Neural Networks for Stroke Patients' outcome Prediction

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F19%3A10242762" target="_blank" >RIV/61989100:27240/19:10242762 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/8813335" target="_blank" >https://ieeexplore.ieee.org/document/8813335</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/DT.2019.8813335" target="_blank" >10.1109/DT.2019.8813335</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Comparing the Performance of Regression Models, Random Forests and Neural Networks for Stroke Patients' outcome Prediction

  • Popis výsledku v původním jazyce

    The paper aimed to explore the performance of three classification methods which were used for the prediction of the clinical outcome of patients after an acute ischemic stroke. We performed the analysis with the logistic regression, the random forests algorithm and the multilayer neural networks. Each method can be evaluated with respect to its flexibility, model interpretability or prediction accuracy. In this paper, we focused on the investigation of properties of the methods with respect to our major problem, i.e. prediction of stroke patients&apos; outcome.For several years, the University Hospital Ostrava in the Czech Republic has been systematically collecting various information about patients who were transported there after suffering from an acute ischemic stroke. Therefore, efficient statistical analysis of the collected data is a vital part of the research. Naturally, the primary interest lies in the analysis of factors affecting the clinical status of patients three months after stroke which was evaluated with widely-used modified Rankin Scale. For the analysis, dichotomized clinical status was used as a target variable. By meaning, the values correspond with the values 0-3 and 4-6 of the modified Rankin Scale.All three models provided satisfactory results. The final binary logistic regression model reached the overall classification accuracy 87%, the random forests models had classification accuracy almost 90% and the multilayer neural networks almost 80% accuracy. The paper also compared the performance with other measures, e.g. well-known sensitivity, specificity or precision. (C) 2019 IEEE.

  • Název v anglickém jazyce

    Comparing the Performance of Regression Models, Random Forests and Neural Networks for Stroke Patients' outcome Prediction

  • Popis výsledku anglicky

    The paper aimed to explore the performance of three classification methods which were used for the prediction of the clinical outcome of patients after an acute ischemic stroke. We performed the analysis with the logistic regression, the random forests algorithm and the multilayer neural networks. Each method can be evaluated with respect to its flexibility, model interpretability or prediction accuracy. In this paper, we focused on the investigation of properties of the methods with respect to our major problem, i.e. prediction of stroke patients&apos; outcome.For several years, the University Hospital Ostrava in the Czech Republic has been systematically collecting various information about patients who were transported there after suffering from an acute ischemic stroke. Therefore, efficient statistical analysis of the collected data is a vital part of the research. Naturally, the primary interest lies in the analysis of factors affecting the clinical status of patients three months after stroke which was evaluated with widely-used modified Rankin Scale. For the analysis, dichotomized clinical status was used as a target variable. By meaning, the values correspond with the values 0-3 and 4-6 of the modified Rankin Scale.All three models provided satisfactory results. The final binary logistic regression model reached the overall classification accuracy 87%, the random forests models had classification accuracy almost 90% and the multilayer neural networks almost 80% accuracy. The paper also compared the performance with other measures, e.g. well-known sensitivity, specificity or precision. (C) 2019 IEEE.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the International Conference on Information and Digital Technologies 2019, IDT 2019

  • ISBN

    978-1-72811-401-9

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

    543-550

  • Název nakladatele

    IEEE

  • Místo vydání

    Piscataway

  • Místo konání akce

    Žilina, Slovakia

  • Datum konání akce

    25. 6. 2019

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku