Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

FINDING ZEROS OF ANALYTIC FUNCTIONS AND LOCAL EIGENVALUE ANALYSIS USING CONTOUR INTEGRAL METHOD IN EXAMPLES

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F17%3A10238501" target="_blank" >RIV/61989100:27240/17:10238501 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989100:27740/17:10238501

  • Výsledek na webu

    <a href="http://advances.utc.sk/index.php/AEEE/article/view/2252/1240" target="_blank" >http://advances.utc.sk/index.php/AEEE/article/view/2252/1240</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.15598/aeee.v15i2.2252" target="_blank" >10.15598/aeee.v15i2.2252</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    FINDING ZEROS OF ANALYTIC FUNCTIONS AND LOCAL EIGENVALUE ANALYSIS USING CONTOUR INTEGRAL METHOD IN EXAMPLES

  • Popis výsledku v původním jazyce

    A numerical method for computing zeros of analytic complex functions is presented. It relies on Cauchy&apos;s residue theorem and the method of Newton&apos;s identities, which translates the problem to finding zeros of a polynomial. In order to stabilize the numerical algorithm, formal orthogonal polynomials are employed. At the end the method is adapted to finding eigenvalues of a matrix pencil in a bounded domain in the complex plane. This work is based on a series of papers of Professor Sakurai and collaborators. Our aim is to make their work available by means of a systematic study of properly chosen examples.

  • Název v anglickém jazyce

    FINDING ZEROS OF ANALYTIC FUNCTIONS AND LOCAL EIGENVALUE ANALYSIS USING CONTOUR INTEGRAL METHOD IN EXAMPLES

  • Popis výsledku anglicky

    A numerical method for computing zeros of analytic complex functions is presented. It relies on Cauchy&apos;s residue theorem and the method of Newton&apos;s identities, which translates the problem to finding zeros of a polynomial. In order to stabilize the numerical algorithm, formal orthogonal polynomials are employed. At the end the method is adapted to finding eigenvalues of a matrix pencil in a bounded domain in the complex plane. This work is based on a series of papers of Professor Sakurai and collaborators. Our aim is to make their work available by means of a systematic study of properly chosen examples.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Advances in Electrical and Electronic Engineering

  • ISSN

    1336-1376

  • e-ISSN

  • Svazek periodika

    15

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    10

  • Strana od-do

    286-295

  • Kód UT WoS článku

    000409044400020

  • EID výsledku v databázi Scopus

    2-s2.0-85025623282