Deciding structural liveness of Petri nets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F17%3A10238579" target="_blank" >RIV/61989100:27240/17:10238579 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007%2F978-3-319-51963-0_8" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-319-51963-0_8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-51963-0_8" target="_blank" >10.1007/978-3-319-51963-0_8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deciding structural liveness of Petri nets
Popis výsledku v původním jazyce
Place/transition Petri nets are a standard model for a class of distributed systems whose reachability spaces might be infinite. One of well-studied topics is the verification of safety and liveness properties in this model; despite the extensive research effort, some basic problems remain open, which is exemplified by the open complexity status of the reachability problem. The liveness problems are known to be closely related to the reachability problem, and many structural properties of nets that are related to liveness have been studied. Somewhat surprisingly, the decidability status of the problem if a net is structurally live, i.e. if there is an initial marking for which it is live, has remained open, as also a recent paper (Best and Esparza, 2016) emphasizes. Here we show that the structural liveness problem for Petri nets is decidable. A crucial ingredient of the proof is the result by Leroux (LiCS 2013) showing that we can compute a finite (Presburger) description of the reachability set for a marked Petri net if this set is semilinear.
Název v anglickém jazyce
Deciding structural liveness of Petri nets
Popis výsledku anglicky
Place/transition Petri nets are a standard model for a class of distributed systems whose reachability spaces might be infinite. One of well-studied topics is the verification of safety and liveness properties in this model; despite the extensive research effort, some basic problems remain open, which is exemplified by the open complexity status of the reachability problem. The liveness problems are known to be closely related to the reachability problem, and many structural properties of nets that are related to liveness have been studied. Somewhat surprisingly, the decidability status of the problem if a net is structurally live, i.e. if there is an initial marking for which it is live, has remained open, as also a recent paper (Best and Esparza, 2016) emphasizes. Here we show that the structural liveness problem for Petri nets is decidable. A crucial ingredient of the proof is the result by Leroux (LiCS 2013) showing that we can compute a finite (Presburger) description of the reachability set for a marked Petri net if this set is semilinear.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-13784S" target="_blank" >GA15-13784S: Výpočetní složitost vybraných verifikačních problémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Volume 10139
ISBN
978-3-319-51962-3
ISSN
0302-9743
e-ISSN
neuvedeno
Počet stran výsledku
12
Strana od-do
"91-"--102
Název nakladatele
Springer
Místo vydání
Berlin
Místo konání akce
Limerik
Datum konání akce
16. 1. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000418793100008