Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Deciding structural liveness of Petri nets

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F17%3A10238579" target="_blank" >RIV/61989100:27240/17:10238579 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/chapter/10.1007%2F978-3-319-51963-0_8" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-319-51963-0_8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-51963-0_8" target="_blank" >10.1007/978-3-319-51963-0_8</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Deciding structural liveness of Petri nets

  • Popis výsledku v původním jazyce

    Place/transition Petri nets are a standard model for a class of distributed systems whose reachability spaces might be infinite. One of well-studied topics is the verification of safety and liveness properties in this model; despite the extensive research effort, some basic problems remain open, which is exemplified by the open complexity status of the reachability problem. The liveness problems are known to be closely related to the reachability problem, and many structural properties of nets that are related to liveness have been studied. Somewhat surprisingly, the decidability status of the problem if a net is structurally live, i.e. if there is an initial marking for which it is live, has remained open, as also a recent paper (Best and Esparza, 2016) emphasizes. Here we show that the structural liveness problem for Petri nets is decidable. A crucial ingredient of the proof is the result by Leroux (LiCS 2013) showing that we can compute a finite (Presburger) description of the reachability set for a marked Petri net if this set is semilinear.

  • Název v anglickém jazyce

    Deciding structural liveness of Petri nets

  • Popis výsledku anglicky

    Place/transition Petri nets are a standard model for a class of distributed systems whose reachability spaces might be infinite. One of well-studied topics is the verification of safety and liveness properties in this model; despite the extensive research effort, some basic problems remain open, which is exemplified by the open complexity status of the reachability problem. The liveness problems are known to be closely related to the reachability problem, and many structural properties of nets that are related to liveness have been studied. Somewhat surprisingly, the decidability status of the problem if a net is structurally live, i.e. if there is an initial marking for which it is live, has remained open, as also a recent paper (Best and Esparza, 2016) emphasizes. Here we show that the structural liveness problem for Petri nets is decidable. A crucial ingredient of the proof is the result by Leroux (LiCS 2013) showing that we can compute a finite (Presburger) description of the reachability set for a marked Petri net if this set is semilinear.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA15-13784S" target="_blank" >GA15-13784S: Výpočetní složitost vybraných verifikačních problémů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Volume 10139

  • ISBN

    978-3-319-51962-3

  • ISSN

    0302-9743

  • e-ISSN

    neuvedeno

  • Počet stran výsledku

    12

  • Strana od-do

    "91-"--102

  • Název nakladatele

    Springer

  • Místo vydání

    Berlin

  • Místo konání akce

    Limerik

  • Datum konání akce

    16. 1. 2017

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000418793100008