Co-finiteness and Co-emptiness of Reachability Sets in Vector Addition Systems with States
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F18%3A73588846" target="_blank" >RIV/61989592:15310/18:73588846 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007%2F978-3-319-91268-4_10" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-319-91268-4_10</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-91268-4_10" target="_blank" >10.1007/978-3-319-91268-4_10</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Co-finiteness and Co-emptiness of Reachability Sets in Vector Addition Systems with States
Popis výsledku v původním jazyce
The coverability and boundedness problems are well-known exponential-space complete problems for vector addition systems with states (or Petri nets). The boundedness problem asks if the reachability set (for a given initial configuration) is finite. Here we consider a dual problem, the co-finiteness problem that asks if the complement of the reachability set is finite; by restricting the question we get the co-emptiness (or universality) problem that asks if all configurations are reachable. We show that both the co-finiteness problem and the co-emptiness problem are complete for exponential space. While the lower bounds are obtained by a straightforward reduction from coverability, getting the upper bounds is more involved; in particular we use the bounds derived for reversible reachability by Leroux in 2013. The studied problems have been motivated by a recent result for structural liveness of Petri nets; this problem has been shown decidable by Jančar in 2017 but its complexity has not been clarified. The problem is tightly related to a generalization of the co-emptiness problem for non-singleton sets of initial markings, in particular for downward closed sets. We formulate the problems generally for semilinear sets of initial markings, and in this case we show that the co-emptiness problem is decidable (without giving an upper complexity bound) and we formulate a conjecture under which the co-finiteness problem is also decidable.
Název v anglickém jazyce
Co-finiteness and Co-emptiness of Reachability Sets in Vector Addition Systems with States
Popis výsledku anglicky
The coverability and boundedness problems are well-known exponential-space complete problems for vector addition systems with states (or Petri nets). The boundedness problem asks if the reachability set (for a given initial configuration) is finite. Here we consider a dual problem, the co-finiteness problem that asks if the complement of the reachability set is finite; by restricting the question we get the co-emptiness (or universality) problem that asks if all configurations are reachable. We show that both the co-finiteness problem and the co-emptiness problem are complete for exponential space. While the lower bounds are obtained by a straightforward reduction from coverability, getting the upper bounds is more involved; in particular we use the bounds derived for reversible reachability by Leroux in 2013. The studied problems have been motivated by a recent result for structural liveness of Petri nets; this problem has been shown decidable by Jančar in 2017 but its complexity has not been clarified. The problem is tightly related to a generalization of the co-emptiness problem for non-singleton sets of initial markings, in particular for downward closed sets. We formulate the problems generally for semilinear sets of initial markings, and in this case we show that the co-emptiness problem is decidable (without giving an upper complexity bound) and we formulate a conjecture under which the co-finiteness problem is also decidable.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-11193S" target="_blank" >GA18-11193S: Algoritmy pro diskrétní systémy a hry s nekonečně mnoha stavy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
39th International Conference on Application and Theory of Petri Nets and Concurrency
ISBN
978-3-319-91267-7
ISSN
0302-9743
e-ISSN
neuvedeno
Počet stran výsledku
20
Strana od-do
184-203
Název nakladatele
Springer-Verlag
Místo vydání
Dordrecht
Místo konání akce
Bratislava
Datum konání akce
24. 6. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—