Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Co-finiteness and Co-emptiness of Reachability Sets in Vector Addition Systems with States

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F18%3A73588846" target="_blank" >RIV/61989592:15310/18:73588846 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/chapter/10.1007%2F978-3-319-91268-4_10" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-319-91268-4_10</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-91268-4_10" target="_blank" >10.1007/978-3-319-91268-4_10</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Co-finiteness and Co-emptiness of Reachability Sets in Vector Addition Systems with States

  • Popis výsledku v původním jazyce

    The coverability and boundedness problems are well-known exponential-space complete problems for vector addition systems with states (or Petri nets). The boundedness problem asks if the reachability set (for a given initial configuration) is finite. Here we consider a dual problem, the co-finiteness problem that asks if the complement of the reachability set is finite; by restricting the question we get the co-emptiness (or universality) problem that asks if all configurations are reachable. We show that both the co-finiteness problem and the co-emptiness problem are complete for exponential space. While the lower bounds are obtained by a straightforward reduction from coverability, getting the upper bounds is more involved; in particular we use the bounds derived for reversible reachability by Leroux in 2013. The studied problems have been motivated by a recent result for structural liveness of Petri nets; this problem has been shown decidable by Jančar in 2017 but its complexity has not been clarified. The problem is tightly related to a generalization of the co-emptiness problem for non-singleton sets of initial markings, in particular for downward closed sets. We formulate the problems generally for semilinear sets of initial markings, and in this case we show that the co-emptiness problem is decidable (without giving an upper complexity bound) and we formulate a conjecture under which the co-finiteness problem is also decidable.

  • Název v anglickém jazyce

    Co-finiteness and Co-emptiness of Reachability Sets in Vector Addition Systems with States

  • Popis výsledku anglicky

    The coverability and boundedness problems are well-known exponential-space complete problems for vector addition systems with states (or Petri nets). The boundedness problem asks if the reachability set (for a given initial configuration) is finite. Here we consider a dual problem, the co-finiteness problem that asks if the complement of the reachability set is finite; by restricting the question we get the co-emptiness (or universality) problem that asks if all configurations are reachable. We show that both the co-finiteness problem and the co-emptiness problem are complete for exponential space. While the lower bounds are obtained by a straightforward reduction from coverability, getting the upper bounds is more involved; in particular we use the bounds derived for reversible reachability by Leroux in 2013. The studied problems have been motivated by a recent result for structural liveness of Petri nets; this problem has been shown decidable by Jančar in 2017 but its complexity has not been clarified. The problem is tightly related to a generalization of the co-emptiness problem for non-singleton sets of initial markings, in particular for downward closed sets. We formulate the problems generally for semilinear sets of initial markings, and in this case we show that the co-emptiness problem is decidable (without giving an upper complexity bound) and we formulate a conjecture under which the co-finiteness problem is also decidable.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-11193S" target="_blank" >GA18-11193S: Algoritmy pro diskrétní systémy a hry s nekonečně mnoha stavy</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    39th International Conference on Application and Theory of Petri Nets and Concurrency

  • ISBN

    978-3-319-91267-7

  • ISSN

    0302-9743

  • e-ISSN

    neuvedeno

  • Počet stran výsledku

    20

  • Strana od-do

    184-203

  • Název nakladatele

    Springer-Verlag

  • Místo vydání

    Dordrecht

  • Místo konání akce

    Bratislava

  • Datum konání akce

    24. 6. 2018

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku