Co-Finiteness and Co-Emptiness of Reachability Sets in Vector Addition Systems with States
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F19%3A73597332" target="_blank" >RIV/61989592:15310/19:73597332 - isvavai.cz</a>
Výsledek na webu
<a href="https://content.iospress.com/articles/fundamenta-informaticae/fi1841" target="_blank" >https://content.iospress.com/articles/fundamenta-informaticae/fi1841</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3233/FI-2019-1841" target="_blank" >10.3233/FI-2019-1841</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Co-Finiteness and Co-Emptiness of Reachability Sets in Vector Addition Systems with States
Popis výsledku v původním jazyce
The boundedness problem is a well-known exponential-space complete problem for vector addition systems with states (or Petri nets); it asks if the reachability set (for a given initial configuration) is finite. Here we consider a dual problem, the co-finiteness problem that asks if the complement of the reachability set is finite; by restricting the question we get the co-emptiness (or universality) problem that asks if all configurations are reachable. We show that both the co-finiteness problem and the co-emptiness problem are exponential-space complete. While the lower bounds are obtained by a straightforward reduction from coverability, getting the upper bounds is more involved; in particular we use the bounds derived for reversible reachability by Leroux (2013). The studied problems were motivated by a result for structural liveness of Petri nets; this problem was shown decidable by Jancar (2017), without clarifying its complexity. The structural liveness problem is tightly related to a generalization of the co-emptiness problem, where the sets of initial configurations are (possibly infinite) downward closed sets instead of just singletons. We formulate the problems even more generally, for semilinear sets of initial configurations; in this case we show that the co-emptiness problem is decidable (without giving an upper complexity bound), and we formulate a conjecture under which the co-finiteness problem is also decidable.
Název v anglickém jazyce
Co-Finiteness and Co-Emptiness of Reachability Sets in Vector Addition Systems with States
Popis výsledku anglicky
The boundedness problem is a well-known exponential-space complete problem for vector addition systems with states (or Petri nets); it asks if the reachability set (for a given initial configuration) is finite. Here we consider a dual problem, the co-finiteness problem that asks if the complement of the reachability set is finite; by restricting the question we get the co-emptiness (or universality) problem that asks if all configurations are reachable. We show that both the co-finiteness problem and the co-emptiness problem are exponential-space complete. While the lower bounds are obtained by a straightforward reduction from coverability, getting the upper bounds is more involved; in particular we use the bounds derived for reversible reachability by Leroux (2013). The studied problems were motivated by a result for structural liveness of Petri nets; this problem was shown decidable by Jancar (2017), without clarifying its complexity. The structural liveness problem is tightly related to a generalization of the co-emptiness problem, where the sets of initial configurations are (possibly infinite) downward closed sets instead of just singletons. We formulate the problems even more generally, for semilinear sets of initial configurations; in this case we show that the co-emptiness problem is decidable (without giving an upper complexity bound), and we formulate a conjecture under which the co-finiteness problem is also decidable.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-11193S" target="_blank" >GA18-11193S: Algoritmy pro diskrétní systémy a hry s nekonečně mnoha stavy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
FUNDAMENTA INFORMATICAE
ISSN
0169-2968
e-ISSN
—
Svazek periodika
169
Číslo periodika v rámci svazku
1-2
Stát vydavatele periodika
PL - Polská republika
Počet stran výsledku
28
Strana od-do
123-150
Kód UT WoS článku
000489900300006
EID výsledku v databázi Scopus
2-s2.0-85073729714