Chain of Influencers: Multipartite Intra-community Ranking
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F17%3A10238634" target="_blank" >RIV/61989100:27240/17:10238634 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-319-62389-4_50#enumeration" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-319-62389-4_50#enumeration</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-62389-4_50" target="_blank" >10.1007/978-3-319-62389-4_50</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Chain of Influencers: Multipartite Intra-community Ranking
Popis výsledku v původním jazyce
Ranking of vertices is an important part of social network analysis. However, thanks to the enormous growth of real-world networks, the global ranking of vertices on a large scale does not provide easily comparable results. On the other hand, the ranking can provide clear results on a local scale and also in heterogeneous networks where we need to work with vertices of different types. In this paper, we present a method of ranking objects in a community which is closely related to the analysis of heterogeneous information networks. Our method assumes that the community is a set of several groups of objects of different types where each group, so-called object pool, contains objects of the same type. These community object pools can be connected and ordered to the chain of influencers, and ranking can be applied to this structure. Based on the chain of influencers, the heterogeneous network can be converted to a multipartite graph. In our approach, we show how to rank vertices of the community using the mutual influence of community object pools. In our experiments, we worked with a computer science research community. Objects of this domain contain authors, papers (articles), topics (keywords), and years of publications. © 2017, Springer International Publishing AG.
Název v anglickém jazyce
Chain of Influencers: Multipartite Intra-community Ranking
Popis výsledku anglicky
Ranking of vertices is an important part of social network analysis. However, thanks to the enormous growth of real-world networks, the global ranking of vertices on a large scale does not provide easily comparable results. On the other hand, the ranking can provide clear results on a local scale and also in heterogeneous networks where we need to work with vertices of different types. In this paper, we present a method of ranking objects in a community which is closely related to the analysis of heterogeneous information networks. Our method assumes that the community is a set of several groups of objects of different types where each group, so-called object pool, contains objects of the same type. These community object pools can be connected and ordered to the chain of influencers, and ranking can be applied to this structure. Based on the chain of influencers, the heterogeneous network can be converted to a multipartite graph. In our approach, we show how to rank vertices of the community using the mutual influence of community object pools. In our experiments, we worked with a computer science research community. Objects of this domain contain authors, papers (articles), topics (keywords), and years of publications. © 2017, Springer International Publishing AG.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Volume 10392
ISBN
978-3-319-62388-7
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
12
Strana od-do
603-614
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Hongkong
Datum konání akce
3. 8. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—