Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Hierarchical Overlapping Community Detection for Weighted Networks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10256316" target="_blank" >RIV/61989100:27240/23:10256316 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/chapter/10.1007/978-3-031-53499-7_13" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-53499-7_13</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-53499-7_13" target="_blank" >10.1007/978-3-031-53499-7_13</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Hierarchical Overlapping Community Detection for Weighted Networks

  • Popis výsledku v původním jazyce

    Real-world networks often contain community structures, where nodes form tightly interconnected clusters. Recent research indicates hierarchical organization, where vertices split into groups that further subdivide across multiple scales. However, individuals in social networks typically belong to multiple communities due to their various affiliations, such as family, friends, and colleagues. These overlaps will emerge in the community structure of online social networks and other complex networks like in biology, where nodes have diverse functions. In this work, we propose an algorithm for hierarchical overlapping community detection in weighted networks. The overlap between clusters is realized via maximal cliques that are used as base elements for hierarchical agglomerative clustering on the graph (GHAC). The closed trail distance and the size of the maximal clique in overlap are used for the dissimilarity between clusters in agglomerative steps of the GHAC. The closed trail distance is designed for weighted networks.Experiments on synthetic networks and different evaluations of the results of experiments show that the proposed algorithm is comparable with other widely used algorithms for overlapping community detection and is efficient for detecting hierarchy structure in weighted networks.

  • Název v anglickém jazyce

    Hierarchical Overlapping Community Detection for Weighted Networks

  • Popis výsledku anglicky

    Real-world networks often contain community structures, where nodes form tightly interconnected clusters. Recent research indicates hierarchical organization, where vertices split into groups that further subdivide across multiple scales. However, individuals in social networks typically belong to multiple communities due to their various affiliations, such as family, friends, and colleagues. These overlaps will emerge in the community structure of online social networks and other complex networks like in biology, where nodes have diverse functions. In this work, we propose an algorithm for hierarchical overlapping community detection in weighted networks. The overlap between clusters is realized via maximal cliques that are used as base elements for hierarchical agglomerative clustering on the graph (GHAC). The closed trail distance and the size of the maximal clique in overlap are used for the dissimilarity between clusters in agglomerative steps of the GHAC. The closed trail distance is designed for weighted networks.Experiments on synthetic networks and different evaluations of the results of experiments show that the proposed algorithm is comparable with other widely used algorithms for overlapping community detection and is efficient for detecting hierarchy structure in weighted networks.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Studies in Computational Intelligence. Volume 1142

  • ISBN

    978-3-031-53498-0

  • ISSN

    1860-949X

  • e-ISSN

    1860-9503

  • Počet stran výsledku

    12

  • Strana od-do

    "159–171"

  • Název nakladatele

    Springer

  • Místo vydání

    Cham

  • Místo konání akce

    Menton

  • Datum konání akce

    28. 11. 2023

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    001264437200013