Hierarchical Overlapping Community Detection for Weighted Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10256316" target="_blank" >RIV/61989100:27240/23:10256316 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-031-53499-7_13" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-53499-7_13</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-53499-7_13" target="_blank" >10.1007/978-3-031-53499-7_13</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hierarchical Overlapping Community Detection for Weighted Networks
Popis výsledku v původním jazyce
Real-world networks often contain community structures, where nodes form tightly interconnected clusters. Recent research indicates hierarchical organization, where vertices split into groups that further subdivide across multiple scales. However, individuals in social networks typically belong to multiple communities due to their various affiliations, such as family, friends, and colleagues. These overlaps will emerge in the community structure of online social networks and other complex networks like in biology, where nodes have diverse functions. In this work, we propose an algorithm for hierarchical overlapping community detection in weighted networks. The overlap between clusters is realized via maximal cliques that are used as base elements for hierarchical agglomerative clustering on the graph (GHAC). The closed trail distance and the size of the maximal clique in overlap are used for the dissimilarity between clusters in agglomerative steps of the GHAC. The closed trail distance is designed for weighted networks.Experiments on synthetic networks and different evaluations of the results of experiments show that the proposed algorithm is comparable with other widely used algorithms for overlapping community detection and is efficient for detecting hierarchy structure in weighted networks.
Název v anglickém jazyce
Hierarchical Overlapping Community Detection for Weighted Networks
Popis výsledku anglicky
Real-world networks often contain community structures, where nodes form tightly interconnected clusters. Recent research indicates hierarchical organization, where vertices split into groups that further subdivide across multiple scales. However, individuals in social networks typically belong to multiple communities due to their various affiliations, such as family, friends, and colleagues. These overlaps will emerge in the community structure of online social networks and other complex networks like in biology, where nodes have diverse functions. In this work, we propose an algorithm for hierarchical overlapping community detection in weighted networks. The overlap between clusters is realized via maximal cliques that are used as base elements for hierarchical agglomerative clustering on the graph (GHAC). The closed trail distance and the size of the maximal clique in overlap are used for the dissimilarity between clusters in agglomerative steps of the GHAC. The closed trail distance is designed for weighted networks.Experiments on synthetic networks and different evaluations of the results of experiments show that the proposed algorithm is comparable with other widely used algorithms for overlapping community detection and is efficient for detecting hierarchy structure in weighted networks.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Studies in Computational Intelligence. Volume 1142
ISBN
978-3-031-53498-0
ISSN
1860-949X
e-ISSN
1860-9503
Počet stran výsledku
12
Strana od-do
"159–171"
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Menton
Datum konání akce
28. 11. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001264437200013