Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Detecting Strong Cliques in Co-authorship Networks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10257003" target="_blank" >RIV/61989100:27240/24:10257003 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/chapter/10.1007/978-3-031-53499-7_16" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-53499-7_16</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-53499-7_16" target="_blank" >10.1007/978-3-031-53499-7_16</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Detecting Strong Cliques in Co-authorship Networks

  • Popis výsledku v původním jazyce

    The study of complete sub-graphs belongs to the classical problems of graph theory. Thanks to sociology, the term clique has come to be used for structures representing a small group of people or other entities who share common characteristics and know each other. Clique detection algorithms can be applied in all domains where networks are used to describe relationships among entities. That is not only in social, information, or communication networks but also in biology, chemistry, medicine, etc. In large-scale, e.g., social networks, cliques can have hundreds or more nodes. On the other hand, e.g., in co-authorship networks representing publishing activities of groups of authors, cliques contain, at most, low dozens of nodes.Our paper describes experiments on detecting strong cliques in two weighted co-authorship networks. These experiments are motivated by the assumption that not every clique detected by traditional algorithms truly satisfies the sociological assumption above. Informally speaking, the approach presented in this paper assumes that each pair of clique nodes must be closer to each other and other clique nodes than to non-clique nodes. Using experiments with weighted co-authorship networks, we show how clique detection results differ from the traditional approach when both the strength of the edge (weight) and the structural neighborhood of the clique are considered simultaneously in the analysis.

  • Název v anglickém jazyce

    Detecting Strong Cliques in Co-authorship Networks

  • Popis výsledku anglicky

    The study of complete sub-graphs belongs to the classical problems of graph theory. Thanks to sociology, the term clique has come to be used for structures representing a small group of people or other entities who share common characteristics and know each other. Clique detection algorithms can be applied in all domains where networks are used to describe relationships among entities. That is not only in social, information, or communication networks but also in biology, chemistry, medicine, etc. In large-scale, e.g., social networks, cliques can have hundreds or more nodes. On the other hand, e.g., in co-authorship networks representing publishing activities of groups of authors, cliques contain, at most, low dozens of nodes.Our paper describes experiments on detecting strong cliques in two weighted co-authorship networks. These experiments are motivated by the assumption that not every clique detected by traditional algorithms truly satisfies the sociological assumption above. Informally speaking, the approach presented in this paper assumes that each pair of clique nodes must be closer to each other and other clique nodes than to non-clique nodes. Using experiments with weighted co-authorship networks, we show how clique detection results differ from the traditional approach when both the strength of the edge (weight) and the structural neighborhood of the clique are considered simultaneously in the analysis.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10200 - Computer and information sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Studies in Computational Intelligence. Volume 1142

  • ISBN

    978-3-031-53498-0

  • ISSN

    1860-949X

  • e-ISSN

    1860-9503

  • Počet stran výsledku

    12

  • Strana od-do

    197-208

  • Název nakladatele

    Springer

  • Místo vydání

    Cham

  • Místo konání akce

    Menton

  • Datum konání akce

    28. 11. 2023

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    001264437200016