Detecting Strong Cliques in Co-authorship Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10257003" target="_blank" >RIV/61989100:27240/24:10257003 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-031-53499-7_16" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-53499-7_16</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-53499-7_16" target="_blank" >10.1007/978-3-031-53499-7_16</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Detecting Strong Cliques in Co-authorship Networks
Popis výsledku v původním jazyce
The study of complete sub-graphs belongs to the classical problems of graph theory. Thanks to sociology, the term clique has come to be used for structures representing a small group of people or other entities who share common characteristics and know each other. Clique detection algorithms can be applied in all domains where networks are used to describe relationships among entities. That is not only in social, information, or communication networks but also in biology, chemistry, medicine, etc. In large-scale, e.g., social networks, cliques can have hundreds or more nodes. On the other hand, e.g., in co-authorship networks representing publishing activities of groups of authors, cliques contain, at most, low dozens of nodes.Our paper describes experiments on detecting strong cliques in two weighted co-authorship networks. These experiments are motivated by the assumption that not every clique detected by traditional algorithms truly satisfies the sociological assumption above. Informally speaking, the approach presented in this paper assumes that each pair of clique nodes must be closer to each other and other clique nodes than to non-clique nodes. Using experiments with weighted co-authorship networks, we show how clique detection results differ from the traditional approach when both the strength of the edge (weight) and the structural neighborhood of the clique are considered simultaneously in the analysis.
Název v anglickém jazyce
Detecting Strong Cliques in Co-authorship Networks
Popis výsledku anglicky
The study of complete sub-graphs belongs to the classical problems of graph theory. Thanks to sociology, the term clique has come to be used for structures representing a small group of people or other entities who share common characteristics and know each other. Clique detection algorithms can be applied in all domains where networks are used to describe relationships among entities. That is not only in social, information, or communication networks but also in biology, chemistry, medicine, etc. In large-scale, e.g., social networks, cliques can have hundreds or more nodes. On the other hand, e.g., in co-authorship networks representing publishing activities of groups of authors, cliques contain, at most, low dozens of nodes.Our paper describes experiments on detecting strong cliques in two weighted co-authorship networks. These experiments are motivated by the assumption that not every clique detected by traditional algorithms truly satisfies the sociological assumption above. Informally speaking, the approach presented in this paper assumes that each pair of clique nodes must be closer to each other and other clique nodes than to non-clique nodes. Using experiments with weighted co-authorship networks, we show how clique detection results differ from the traditional approach when both the strength of the edge (weight) and the structural neighborhood of the clique are considered simultaneously in the analysis.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Studies in Computational Intelligence. Volume 1142
ISBN
978-3-031-53498-0
ISSN
1860-949X
e-ISSN
1860-9503
Počet stran výsledku
12
Strana od-do
197-208
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Menton
Datum konání akce
28. 11. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001264437200016