A hierarchical overlapping community detection method based on closed trail distance and maximal cliques
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10254116" target="_blank" >RIV/61989100:27240/24:10254116 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0020025524001841" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0020025524001841</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ins.2024.120271" target="_blank" >10.1016/j.ins.2024.120271</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A hierarchical overlapping community detection method based on closed trail distance and maximal cliques
Popis výsledku v původním jazyce
An important feature of real networks is their hierarchy and the existence of overlapping communities. Hierarchical agglomerative clustering is one way to determine the hierarchy of a network. To ensure the existence of overlapping communities, it is appropriate to choose the base elements for clustering - edges, cliques, etc. These base elements can then have common vertices and naturally provide the possibility of overlap. The proposed community detection method uses hierarchical agglomerative clustering on the 2-edge-connected component of the graph. Communities are constructed from maximal cliques as base elements. Novel dissimilarities for hierarchical agglomerative clustering were introduced for the merging of cliques. The dissimilarities use the size of the overlapped cliques and closed trail distance to express dissimilarity between communities in networks. The single linkage approach contains and extends the results of k-CPM. The proposed algorithm utilizing deterministic dissimilarity achieves comparable or superior outcomes compared to standard algorithms used for hierarchical or overlapping community detection.
Název v anglickém jazyce
A hierarchical overlapping community detection method based on closed trail distance and maximal cliques
Popis výsledku anglicky
An important feature of real networks is their hierarchy and the existence of overlapping communities. Hierarchical agglomerative clustering is one way to determine the hierarchy of a network. To ensure the existence of overlapping communities, it is appropriate to choose the base elements for clustering - edges, cliques, etc. These base elements can then have common vertices and naturally provide the possibility of overlap. The proposed community detection method uses hierarchical agglomerative clustering on the 2-edge-connected component of the graph. Communities are constructed from maximal cliques as base elements. Novel dissimilarities for hierarchical agglomerative clustering were introduced for the merging of cliques. The dissimilarities use the size of the overlapped cliques and closed trail distance to express dissimilarity between communities in networks. The single linkage approach contains and extends the results of k-CPM. The proposed algorithm utilizing deterministic dissimilarity achieves comparable or superior outcomes compared to standard algorithms used for hierarchical or overlapping community detection.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Information sciences
ISSN
0020-0255
e-ISSN
1872-6291
Svazek periodika
662
Číslo periodika v rámci svazku
Březen
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
120271
Kód UT WoS článku
001182241200001
EID výsledku v databázi Scopus
—