Simultaneous Prediction of Wind Speed and Direction by Evolutionary Fuzzy Rule Forest
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F17%3A10238690" target="_blank" >RIV/61989100:27240/17:10238690 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S187705091730786X?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S187705091730786X?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.procs.2017.05.195" target="_blank" >10.1016/j.procs.2017.05.195</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Simultaneous Prediction of Wind Speed and Direction by Evolutionary Fuzzy Rule Forest
Popis výsledku v původním jazyce
An accurate estimate of wind speed and direction is important for many application domains including weather prediction, smart grids, and e.g. traffic management. These two environmental variables depend on a number of factors and are linked together. Evolutionary fuzzy rules, based on fuzzy information retrieval and genetic programming, have been used to solve a variety of real-world regression and classification tasks. They were, however, limited by the ability to estimate only one variable by a single model. In this work, we introduce an extended version of this predictor that facilitates an artificial evolution of forests of fuzzy rules. In this way, multiple variables can be predicted by a single model that is able to comprehend complex relations between input and output variables. The usefulness of the proposed concept is demonstrated by the evolution of forests of fuzzy rules for simultaneous wind speed and direction prediction.
Název v anglickém jazyce
Simultaneous Prediction of Wind Speed and Direction by Evolutionary Fuzzy Rule Forest
Popis výsledku anglicky
An accurate estimate of wind speed and direction is important for many application domains including weather prediction, smart grids, and e.g. traffic management. These two environmental variables depend on a number of factors and are linked together. Evolutionary fuzzy rules, based on fuzzy information retrieval and genetic programming, have been used to solve a variety of real-world regression and classification tasks. They were, however, limited by the ability to estimate only one variable by a single model. In this work, we introduce an extended version of this predictor that facilitates an artificial evolution of forests of fuzzy rules. In this way, multiple variables can be predicted by a single model that is able to comprehend complex relations between input and output variables. The usefulness of the proposed concept is demonstrated by the evolution of forests of fuzzy rules for simultaneous wind speed and direction prediction.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ16-25694Y" target="_blank" >GJ16-25694Y: Mnohoparadigmatické algoritmy dolování z dat založené na vyhledávání, fuzzy technologiích a bio-inspirovaných výpočtech</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Procedia Computer Science. Volume 108
ISBN
—
ISSN
1877-0509
e-ISSN
neuvedeno
Počet stran výsledku
10
Strana od-do
295-304
Název nakladatele
Elsevier
Místo vydání
Amsterdam
Místo konání akce
Curych
Datum konání akce
12. 6. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—