Optimal energy management of residential PV/HESS using evolutionary fuzzy control
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F17%3A10238698" target="_blank" >RIV/61989100:27240/17:10238698 - isvavai.cz</a>
Výsledek na webu
<a href="http://ieeexplore.ieee.org/document/7969558/" target="_blank" >http://ieeexplore.ieee.org/document/7969558/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CEC.2017.7969558" target="_blank" >10.1109/CEC.2017.7969558</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optimal energy management of residential PV/HESS using evolutionary fuzzy control
Popis výsledku v původním jazyce
The adoption of residential photovoltaic power generators combined with energy storage system can reduce the energy dependency of individual households while alleviating the impact of intermittent solar energy on the electric power grid. However, to maximize the benefits, energy in such systems must be carefully managed. The first step towards development of such energy management system, described in our previous work, is determination of the optimal power flows that reflects the current and future solar energy availability and household load, as well as the state of the energy storage system. This paper builds on the optimal power flows to develop an advanced energy management system in form of a fuzzy rule base system. The time series of the optimal flows, determined using linear programming, are used to determine the parameters of a Takagi-Sugeno fuzzy controller through differential evolution. The resulting system can be implemented to control power flows in other systems composed of photovoltaic generation and energy storage. The results confirm the operational and economic benefits of using the optimal operational strategy, while allowing its in-depth analysis through the evolved fuzzy rule base. © 2017 IEEE.
Název v anglickém jazyce
Optimal energy management of residential PV/HESS using evolutionary fuzzy control
Popis výsledku anglicky
The adoption of residential photovoltaic power generators combined with energy storage system can reduce the energy dependency of individual households while alleviating the impact of intermittent solar energy on the electric power grid. However, to maximize the benefits, energy in such systems must be carefully managed. The first step towards development of such energy management system, described in our previous work, is determination of the optimal power flows that reflects the current and future solar energy availability and household load, as well as the state of the energy storage system. This paper builds on the optimal power flows to develop an advanced energy management system in form of a fuzzy rule base system. The time series of the optimal flows, determined using linear programming, are used to determine the parameters of a Takagi-Sugeno fuzzy controller through differential evolution. The resulting system can be implemented to control power flows in other systems composed of photovoltaic generation and energy storage. The results confirm the operational and economic benefits of using the optimal operational strategy, while allowing its in-depth analysis through the evolved fuzzy rule base. © 2017 IEEE.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ16-25694Y" target="_blank" >GJ16-25694Y: Mnohoparadigmatické algoritmy dolování z dat založené na vyhledávání, fuzzy technologiích a bio-inspirovaných výpočtech</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2017 IEEE Congress on Evolutionary Computation, CEC 2017 - Proceedings
ISBN
978-1-5090-4601-0
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
8
Strana od-do
2094-2101
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
San Sebastián
Datum konání akce
5. 6. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000426929700271