LP-based predictive energy management system for residential PV/BESS
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F17%3A10241720" target="_blank" >RIV/61989100:27240/17:10241720 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/8123213" target="_blank" >https://ieeexplore.ieee.org/document/8123213</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/SMC.2017.8123213" target="_blank" >10.1109/SMC.2017.8123213</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
LP-based predictive energy management system for residential PV/BESS
Popis výsledku v původním jazyce
The deployment of solar energy generation combined with energy storage systems can reduce the energy dependency of individual households while mitigating the impact of the intermittent renewable energy sources on the electric power grid. However, to maximize the benefits, efficient operational strategies must be defined to manage flows of energy in such systems. The first step towards the development of such energy management system, described in previous work, is the determination of the optimal power flows that reflects the current and future solar energy availability and household load, as well as the state of the energy storage system. This paper builds on the optimal power flows to develop an advanced energy management system. The time series of the optimal flows, determined using linear programming, are used to set the parameters of the controller for the next time window. The results confirm the operational and economic benefits of using the proposed LP-based predictive energy management. It also compares favorably with other commonly used strategies. (C) 2017 IEEE.
Název v anglickém jazyce
LP-based predictive energy management system for residential PV/BESS
Popis výsledku anglicky
The deployment of solar energy generation combined with energy storage systems can reduce the energy dependency of individual households while mitigating the impact of the intermittent renewable energy sources on the electric power grid. However, to maximize the benefits, efficient operational strategies must be defined to manage flows of energy in such systems. The first step towards the development of such energy management system, described in previous work, is the determination of the optimal power flows that reflects the current and future solar energy availability and household load, as well as the state of the energy storage system. This paper builds on the optimal power flows to develop an advanced energy management system. The time series of the optimal flows, determined using linear programming, are used to set the parameters of the controller for the next time window. The results confirm the operational and economic benefits of using the proposed LP-based predictive energy management. It also compares favorably with other commonly used strategies. (C) 2017 IEEE.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2017 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2017
ISBN
978-1-5386-1645-1
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
6
Strana od-do
3727-3732
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Banff
Datum konání akce
5. 10. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—