Accelerate SOMA Using Parallel Processing in GPGPU
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F17%3A10238702" target="_blank" >RIV/61989100:27240/17:10238702 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/17:10238702
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-319-50904-4_6" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-319-50904-4_6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-50904-4_6" target="_blank" >10.1007/978-3-319-50904-4_6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Accelerate SOMA Using Parallel Processing in GPGPU
Popis výsledku v původním jazyce
This paper presents methods for implementing SOMA (Self-Organizing Migrating Algorithm) in parallel with the CUDA (Compute Unified Device Architecture) system that can be used to perform the dominant of up-speed when using SOMA algorithm. SOMA has many individual points to find the global minimum which is the key for paralleling this system because each individual can work separately and share the position for all when it moves. Nowadays, due to the humongous size of data and the limitation of the process in single Central Processing Unit (CPU), it becomes impossible to deal with. As a result of these limitations, we need more CPUs working at the same time to do the same job or take advantage of the power of parallel processing in GPGPU (General-Purpose graphics processing unit). Additionally, many supercomputers are built with the need of Parallel Processing in order to meet the power of hardware. Based on the architecture of CUDA, it can handle the threads in SOMA independence. We use two methods with different architecture in CUDA to help SOMA run much faster than single threading method. This paper also uses some techniques to help SOMA work more effective.
Název v anglickém jazyce
Accelerate SOMA Using Parallel Processing in GPGPU
Popis výsledku anglicky
This paper presents methods for implementing SOMA (Self-Organizing Migrating Algorithm) in parallel with the CUDA (Compute Unified Device Architecture) system that can be used to perform the dominant of up-speed when using SOMA algorithm. SOMA has many individual points to find the global minimum which is the key for paralleling this system because each individual can work separately and share the position for all when it moves. Nowadays, due to the humongous size of data and the limitation of the process in single Central Processing Unit (CPU), it becomes impossible to deal with. As a result of these limitations, we need more CPUs working at the same time to do the same job or take advantage of the power of parallel processing in GPGPU (General-Purpose graphics processing unit). Additionally, many supercomputers are built with the need of Parallel Processing in order to meet the power of hardware. Based on the architecture of CUDA, it can handle the threads in SOMA independence. We use two methods with different architecture in CUDA to help SOMA run much faster than single threading method. This paper also uses some techniques to help SOMA work more effective.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Electrical Engineering. Volume 465
ISBN
978-3-319-69813-7
ISSN
1876-1100
e-ISSN
1876-1119
Počet stran výsledku
10
Strana od-do
53-62
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Ho Či Minovo Město
Datum konání akce
7. 12. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—