Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Geometrical and topological approaches to Big Data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F17%3A10238730" target="_blank" >RIV/61989100:27240/17:10238730 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0167739X16301856?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0167739X16301856?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.future.2016.06.005" target="_blank" >10.1016/j.future.2016.06.005</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Geometrical and topological approaches to Big Data

  • Popis výsledku v původním jazyce

    Modern data science uses topological methods to find the structural features of data sets before further supervised or unsupervised analysis. Geometry and topology are very natural tools for analysing massive amounts of data since geometry can be regarded as the study of distance functions. Mathematical formalism, which has been developed for incorporating geometric and topological techniques, deals with point cloud data sets, i.e. finite sets of points. It then adapts tools from the various branches of geometry and topology for the study of point cloud data sets. The point clouds are finite samples taken from a geometric object, perhaps with noise. Topology provides a formal language for qualitative mathematics, whereas geometry is mainly quantitative. Thus, in topology, we study the relationships of proximity or nearness, without using distances. A map between topological spaces is called continuous if it preserves the nearness structures. Geometrical and topological methods are tools allowing us to analyse highly complex data. These methods create a summary or compressed representation of all of the data features to help to rapidly uncover particular patterns and relationships in data. The idea of constructing summaries of entire domains of attributes involves understanding the relationship between topological and geometric objects constructed from data using various features. A common thread in various approaches for noise removal, model reduction, feasibility reconstruction, and blind source separation, is to replace the original data with a lower dimensional approximate representation obtained via a matrix or multi-directional array factorization or decomposition. Besides those transformations, a significant challenge of feature summarization or subset selection methods for Big Data will be considered by focusing on scalable feature selection. Lower dimensional approximate representation is used for Big Data visualization. The cross-field between topology and Big Data will bring huge opportunities, as well as challenges, to Big Data communities. This survey aims at bringing together state-of-the-art research results on geometrical and topological methods for Big Data.

  • Název v anglickém jazyce

    Geometrical and topological approaches to Big Data

  • Popis výsledku anglicky

    Modern data science uses topological methods to find the structural features of data sets before further supervised or unsupervised analysis. Geometry and topology are very natural tools for analysing massive amounts of data since geometry can be regarded as the study of distance functions. Mathematical formalism, which has been developed for incorporating geometric and topological techniques, deals with point cloud data sets, i.e. finite sets of points. It then adapts tools from the various branches of geometry and topology for the study of point cloud data sets. The point clouds are finite samples taken from a geometric object, perhaps with noise. Topology provides a formal language for qualitative mathematics, whereas geometry is mainly quantitative. Thus, in topology, we study the relationships of proximity or nearness, without using distances. A map between topological spaces is called continuous if it preserves the nearness structures. Geometrical and topological methods are tools allowing us to analyse highly complex data. These methods create a summary or compressed representation of all of the data features to help to rapidly uncover particular patterns and relationships in data. The idea of constructing summaries of entire domains of attributes involves understanding the relationship between topological and geometric objects constructed from data using various features. A common thread in various approaches for noise removal, model reduction, feasibility reconstruction, and blind source separation, is to replace the original data with a lower dimensional approximate representation obtained via a matrix or multi-directional array factorization or decomposition. Besides those transformations, a significant challenge of feature summarization or subset selection methods for Big Data will be considered by focusing on scalable feature selection. Lower dimensional approximate representation is used for Big Data visualization. The cross-field between topology and Big Data will bring huge opportunities, as well as challenges, to Big Data communities. This survey aims at bringing together state-of-the-art research results on geometrical and topological methods for Big Data.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GJ16-25694Y" target="_blank" >GJ16-25694Y: Mnohoparadigmatické algoritmy dolování z dat založené na vyhledávání, fuzzy technologiích a bio-inspirovaných výpočtech</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Future generation computer systems

  • ISSN

    0167-739X

  • e-ISSN

  • Svazek periodika

    67

  • Číslo periodika v rámci svazku

    February

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    11

  • Strana od-do

    286-296

  • Kód UT WoS článku

    000389555700023

  • EID výsledku v databázi Scopus

    2-s2.0-84979556390