Hyperloom Possibilities for Executing Scientific Workflows on the Cloud
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F18%3A10237362" target="_blank" >RIV/61989100:27240/18:10237362 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/18:10237362
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007%2F978-3-319-61566-0_36" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-319-61566-0_36</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-61566-0_36" target="_blank" >10.1007/978-3-319-61566-0_36</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hyperloom Possibilities for Executing Scientific Workflows on the Cloud
Popis výsledku v původním jazyce
We have developed HyperLoom - a platform for defining and executing scientific workflows in large-scale HPC systems. The computational tasks in such workflows often have non-trivial dependency patterns, unknown execution time and unknown sizes of generated outputs. HyperLoom enables to efficiently execute the workflows respecting task requirements and cluster resources agnostically to the shape or size of the workflow. Although HPC infrastructures provide an unbeatable performance, they may be unavailable or too expensive especially for small to medium workloads. Moreover, for some workloads, due to HPCs not very flexible resource allocation policy, the system energy efficiency may not be optimal at some stages of the execution. In contrast, current public cloud providers such as Amazon, Google or Exoscale allow users a comfortable and elastic way of deploying, scaling and disposing a virtualized cluster of almost any size. In this paper, we describe HyperLoom virtualization and evaluate its performance in a virtualized environment using workflows of various shapes and sizes. Finally, we discuss the Hyperloom potential for its expansion to cloud environments.
Název v anglickém jazyce
Hyperloom Possibilities for Executing Scientific Workflows on the Cloud
Popis výsledku anglicky
We have developed HyperLoom - a platform for defining and executing scientific workflows in large-scale HPC systems. The computational tasks in such workflows often have non-trivial dependency patterns, unknown execution time and unknown sizes of generated outputs. HyperLoom enables to efficiently execute the workflows respecting task requirements and cluster resources agnostically to the shape or size of the workflow. Although HPC infrastructures provide an unbeatable performance, they may be unavailable or too expensive especially for small to medium workloads. Moreover, for some workloads, due to HPCs not very flexible resource allocation policy, the system energy efficiency may not be optimal at some stages of the execution. In contrast, current public cloud providers such as Amazon, Google or Exoscale allow users a comfortable and elastic way of deploying, scaling and disposing a virtualized cluster of almost any size. In this paper, we describe HyperLoom virtualization and evaluate its performance in a virtualized environment using workflows of various shapes and sizes. Finally, we discuss the Hyperloom potential for its expansion to cloud environments.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in Intelligent Systems and Computing. Volume 611
ISBN
978-3-319-61565-3
ISSN
2194-5357
e-ISSN
2194-5365
Počet stran výsledku
10
Strana od-do
397-406
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Turín
Datum konání akce
10. 7. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000432998800036