Sampling as a Method of Comparing Real and Generated Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F18%3A10238665" target="_blank" >RIV/61989100:27240/18:10238665 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-319-68527-4_13" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-319-68527-4_13</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-68527-4_13" target="_blank" >10.1007/978-3-319-68527-4_13</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sampling as a Method of Comparing Real and Generated Networks
Popis výsledku v původním jazyce
In this paper, we combine the use of sampling methods and a network generator to assess the degree of similarity between real and generated networks. Generative network models provide a tool for studying essential network features. These include, for example, the average and distribution of node degree, cluster coefficient and community size. The aim of the generators based on these models is to create networks with properties close to real networks. Even with a high similarity of global properties of real and generated networks, the local structures of these networks often differ considerably. On the other hand, when the network is reduced by a sampling method, global features of networks are strongly influenced by local structures. In the paper, we compare properties of a real-world network and a generated network and also properties of their small samples. In experiments, we show how the distribution of the properties of individual networks change by using different sampling methods and how these distributions differ for both networks and their small samples. (C) 2018, Springer International Publishing AG.
Název v anglickém jazyce
Sampling as a Method of Comparing Real and Generated Networks
Popis výsledku anglicky
In this paper, we combine the use of sampling methods and a network generator to assess the degree of similarity between real and generated networks. Generative network models provide a tool for studying essential network features. These include, for example, the average and distribution of node degree, cluster coefficient and community size. The aim of the generators based on these models is to create networks with properties close to real networks. Even with a high similarity of global properties of real and generated networks, the local structures of these networks often differ considerably. On the other hand, when the network is reduced by a sampling method, global features of networks are strongly influenced by local structures. In the paper, we compare properties of a real-world network and a generated network and also properties of their small samples. In experiments, we show how the distribution of the properties of individual networks change by using different sampling methods and how these distributions differ for both networks and their small samples. (C) 2018, Springer International Publishing AG.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in Intelligent Systems and Computing. Volume 682
ISBN
978-3-319-68526-7
ISSN
2194-5357
e-ISSN
neuvedeno
Počet stran výsledku
11
Strana od-do
117-127
Název nakladatele
Springer Verlag
Místo vydání
Cham
Místo konání akce
Málaga
Datum konání akce
9. 10. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—