Equivalent formulations of the Riemann hypothesis based on lines of constant phase
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F18%3A10239065" target="_blank" >RIV/61989100:27240/18:10239065 - isvavai.cz</a>
Výsledek na webu
<a href="http://iopscience.iop.org/article/10.1088/1402-4896/aabca9" target="_blank" >http://iopscience.iop.org/article/10.1088/1402-4896/aabca9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1402-4896/aabca9" target="_blank" >10.1088/1402-4896/aabca9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Equivalent formulations of the Riemann hypothesis based on lines of constant phase
Popis výsledku v původním jazyce
We prove the equivalence of three formulations of the Riemann hypothesis for functions f defined by the four assumptions: (a1) f satisfies the functional equation f (1 - s) = f (s) for the complex argument s = sigma + i tau, (a2) f is free of any pole, (a3) for large positive values of s the phase. of f increases in a monotonic way without a bound as tau increases, and (a4) the zeros of f as well as of the first derivative f ' of f are simple zeros. The three equivalent formulations are: (R1) All zeros of f are located on the critical line sigma = 1/2, (R2) All lines of constant phase theta of f corresponding to +/-pi, +/- 2 pi, +/- 3 pi, ... merge with the critical line, and (R3) All points where f' vanishes are located on the critical line, and the phases of f at two consecutive zeros of f' differ by pi. Our proof relies on the topology of the lines of constant phase of f dictated by complex analysis and the assumptions (a1)-(a4). Moreover, we show that (R2) implies (R1) even in the absence of (a4). In this case (a4) is a consequence of (R2).
Název v anglickém jazyce
Equivalent formulations of the Riemann hypothesis based on lines of constant phase
Popis výsledku anglicky
We prove the equivalence of three formulations of the Riemann hypothesis for functions f defined by the four assumptions: (a1) f satisfies the functional equation f (1 - s) = f (s) for the complex argument s = sigma + i tau, (a2) f is free of any pole, (a3) for large positive values of s the phase. of f increases in a monotonic way without a bound as tau increases, and (a4) the zeros of f as well as of the first derivative f ' of f are simple zeros. The three equivalent formulations are: (R1) All zeros of f are located on the critical line sigma = 1/2, (R2) All lines of constant phase theta of f corresponding to +/-pi, +/- 2 pi, +/- 3 pi, ... merge with the critical line, and (R3) All points where f' vanishes are located on the critical line, and the phases of f at two consecutive zeros of f' differ by pi. Our proof relies on the topology of the lines of constant phase of f dictated by complex analysis and the assumptions (a1)-(a4). Moreover, we show that (R2) implies (R1) even in the absence of (a4). In this case (a4) is a consequence of (R2).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physica Scripta
ISSN
0031-8949
e-ISSN
—
Svazek periodika
93
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
"065201(1)"-"065201(11)"
Kód UT WoS článku
000433131400001
EID výsledku v databázi Scopus
2-s2.0-85048118713