Equivalent formulations of the Riemann hypothesis based on the lines of constant phase
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F18%3A00325860" target="_blank" >RIV/68407700:21340/18:00325860 - isvavai.cz</a>
Výsledek na webu
<a href="http://iopscience.iop.org/article/10.1088/1402-4896/aabca9" target="_blank" >http://iopscience.iop.org/article/10.1088/1402-4896/aabca9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1402-4896/aabca9" target="_blank" >10.1088/1402-4896/aabca9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Equivalent formulations of the Riemann hypothesis based on the lines of constant phase
Popis výsledku v původním jazyce
We prove the equivalence of three formulations of the Riemann hypothesis for functions f defined by the four assumptions: (a 1) f satisfies the functional equation f(1 - s) = f(s) for the complex argument s = σ + iτ, (a2) f is free of any pole, (a3) for large positive values of σ the phase θ of f increases in a monotonic way without a bound as τ increases, and (a4) the zeros of f as well as of the first derivative f ' of f are simple zeros. The three equivalent formulations are: (R1) All zeros of f are located on the critical line σ = 1/2, (R2) All lines of constant phase of f corresponding to $pm pi ,pm 2pi ,pm 3pi ,,...$ merge with the critical line, and (R3) All points where f ' vanishes are located on the critical line, and the phases of f at two consecutive zeros of f ' differ by π. Our proof relies on the topology of the lines of constant phase of f dictated by complex analysis and the assumptions (a1)–(a4). Moreover, we show that (R2) implies (R1) even in the absence of (a4). In this case (a4) is a consequence of (R2).
Název v anglickém jazyce
Equivalent formulations of the Riemann hypothesis based on the lines of constant phase
Popis výsledku anglicky
We prove the equivalence of three formulations of the Riemann hypothesis for functions f defined by the four assumptions: (a 1) f satisfies the functional equation f(1 - s) = f(s) for the complex argument s = σ + iτ, (a2) f is free of any pole, (a3) for large positive values of σ the phase θ of f increases in a monotonic way without a bound as τ increases, and (a4) the zeros of f as well as of the first derivative f ' of f are simple zeros. The three equivalent formulations are: (R1) All zeros of f are located on the critical line σ = 1/2, (R2) All lines of constant phase of f corresponding to $pm pi ,pm 2pi ,pm 3pi ,,...$ merge with the critical line, and (R3) All points where f ' vanishes are located on the critical line, and the phases of f at two consecutive zeros of f ' differ by π. Our proof relies on the topology of the lines of constant phase of f dictated by complex analysis and the assumptions (a1)–(a4). Moreover, we show that (R2) implies (R1) even in the absence of (a4). In this case (a4) is a consequence of (R2).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA13-33906S" target="_blank" >GA13-33906S: Využití potenciálu kvantových procházek</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physica Scripta
ISSN
0031-8949
e-ISSN
1402-4896
Svazek periodika
93
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
SE - Švédské království
Počet stran výsledku
11
Strana od-do
—
Kód UT WoS článku
000433131400001
EID výsledku v databázi Scopus
2-s2.0-85048118713