Human Abnormal Behavior Impact on Speaker Verification Systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F18%3A10239776" target="_blank" >RIV/61989100:27240/18:10239776 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/18:10239776
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/8409958" target="_blank" >https://ieeexplore.ieee.org/document/8409958</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2018.2854960" target="_blank" >10.1109/ACCESS.2018.2854960</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Human Abnormal Behavior Impact on Speaker Verification Systems
Popis výsledku v původním jazyce
Human behavior plays a major role in improving human-machine communication. The performance must be affected by abnormal behavior as systems are trained using normal utterances. The abnormal behavior is often associated with a change in the human emotional state. Different emotional states cause physiological changes in the human body that affect the vocal tract. Fear, anger, or even happiness we recognize as a deviation from a normal behavior. The whole spectrum of human-machine application is susceptible to behavioral changes. Abnormal behavior is a major factor, especially for security applications such as verification systems. Face, fingerprint, iris, or speaker verification is a group of the most common approaches to biometric authentication today. This paper discusses human normal and abnormal behavior and its impact on the accuracy and effectiveness of automatic speaker verification (ASV). The support vector machines classifier inputs are Mel-frequency cepstral coefficients and their dynamic changes. For this purpose, the Berlin Database of Emotional Speech was used. Research has shown that abnormal behavior has a major impact on the accuracy of verification, where the equal error rate increase to 37 %. This paper also describes a new design and application of the ASV system that is much more immune to the rejection of a target user with abnormal behavior.
Název v anglickém jazyce
Human Abnormal Behavior Impact on Speaker Verification Systems
Popis výsledku anglicky
Human behavior plays a major role in improving human-machine communication. The performance must be affected by abnormal behavior as systems are trained using normal utterances. The abnormal behavior is often associated with a change in the human emotional state. Different emotional states cause physiological changes in the human body that affect the vocal tract. Fear, anger, or even happiness we recognize as a deviation from a normal behavior. The whole spectrum of human-machine application is susceptible to behavioral changes. Abnormal behavior is a major factor, especially for security applications such as verification systems. Face, fingerprint, iris, or speaker verification is a group of the most common approaches to biometric authentication today. This paper discusses human normal and abnormal behavior and its impact on the accuracy and effectiveness of automatic speaker verification (ASV). The support vector machines classifier inputs are Mel-frequency cepstral coefficients and their dynamic changes. For this purpose, the Berlin Database of Emotional Speech was used. Research has shown that abnormal behavior has a major impact on the accuracy of verification, where the equal error rate increase to 37 %. This paper also describes a new design and application of the ASV system that is much more immune to the rejection of a target user with abnormal behavior.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2015070" target="_blank" >LM2015070: IT4Innovations národní superpočítačové centrum</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
—
Svazek periodika
6
Číslo periodika v rámci svazku
July
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
40120-40127
Kód UT WoS článku
000441375000001
EID výsledku v databázi Scopus
2-s2.0-85049804543