Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Utilization of the LMS Algorithm to Filter the Predicted Course by Means of Neural Networks for Monitoring the Occupancy of Rooms in an Intelligent Administrative Building

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F18%3A10241542" target="_blank" >RIV/61989100:27240/18:10241542 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989100:27640/18:10241542

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S2405896318309297" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2405896318309297</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ifacol.2018.07.183" target="_blank" >10.1016/j.ifacol.2018.07.183</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Utilization of the LMS Algorithm to Filter the Predicted Course by Means of Neural Networks for Monitoring the Occupancy of Rooms in an Intelligent Administrative Building

  • Popis výsledku v původním jazyce

    For monitoring the occupancy of individual rooms in an intelligent administrative building (IAB), a wide variety of sensors can be used, by means of which the presence of a person in the monitored area can be determined. For a larger administrative-type building, installation of additional sensors means considerable investment costs. As the present-day standard, temperature or also humidity sensors are installed in individual IAB rooms. The paper describes the proposed method for the determination of occupancy of the monitored area by means of prediction of the course of CO2(ppm) from the measured values of humidity rH(%), indoor temperature Ti(oC) and outdoor temperature To(oC), using the gradient algorithm of back-propagation of error for adaptation of the multilayer feedforward Artificial Neural Network (ANN) in the IAB areas with utilization of the Bayesian regularization method (BRM) to obtain information on the occupancy of individual rooms. The LMS algorithm was used to filter the predicted course in order to determine the occupancy of the monitored areas more precisely. The advantage of the proposed method is the utilization of common operating sensors to obtain information on the state of operational-technical functions in the IAB for the purpose of optimum control of the operational-technical functions of the IAB on the basis of predictable needs of persons using the IAB areas. (C) 2018

  • Název v anglickém jazyce

    Utilization of the LMS Algorithm to Filter the Predicted Course by Means of Neural Networks for Monitoring the Occupancy of Rooms in an Intelligent Administrative Building

  • Popis výsledku anglicky

    For monitoring the occupancy of individual rooms in an intelligent administrative building (IAB), a wide variety of sensors can be used, by means of which the presence of a person in the monitored area can be determined. For a larger administrative-type building, installation of additional sensors means considerable investment costs. As the present-day standard, temperature or also humidity sensors are installed in individual IAB rooms. The paper describes the proposed method for the determination of occupancy of the monitored area by means of prediction of the course of CO2(ppm) from the measured values of humidity rH(%), indoor temperature Ti(oC) and outdoor temperature To(oC), using the gradient algorithm of back-propagation of error for adaptation of the multilayer feedforward Artificial Neural Network (ANN) in the IAB areas with utilization of the Bayesian regularization method (BRM) to obtain information on the occupancy of individual rooms. The LMS algorithm was used to filter the predicted course in order to determine the occupancy of the monitored areas more precisely. The advantage of the proposed method is the utilization of common operating sensors to obtain information on the state of operational-technical functions in the IAB for the purpose of optimum control of the operational-technical functions of the IAB on the basis of predictable needs of persons using the IAB areas. (C) 2018

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    20205 - Automation and control systems

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000867" target="_blank" >EF16_019/0000867: Centrum výzkumu pokročilých mechatronických systémů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IFAC-PapersOnLine. Volume 51

  • ISSN

    2405-8963

  • e-ISSN

  • Svazek periodika

    51

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    6

  • Strana od-do

    378-383

  • Kód UT WoS článku

    000445644900064

  • EID výsledku v databázi Scopus

    2-s2.0-85052901782