Utilization of the LMS Algorithm to Filter the Predicted Course by Means of Neural Networks for Monitoring the Occupancy of Rooms in an Intelligent Administrative Building
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F18%3A10241542" target="_blank" >RIV/61989100:27240/18:10241542 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27640/18:10241542
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2405896318309297" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2405896318309297</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ifacol.2018.07.183" target="_blank" >10.1016/j.ifacol.2018.07.183</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Utilization of the LMS Algorithm to Filter the Predicted Course by Means of Neural Networks for Monitoring the Occupancy of Rooms in an Intelligent Administrative Building
Popis výsledku v původním jazyce
For monitoring the occupancy of individual rooms in an intelligent administrative building (IAB), a wide variety of sensors can be used, by means of which the presence of a person in the monitored area can be determined. For a larger administrative-type building, installation of additional sensors means considerable investment costs. As the present-day standard, temperature or also humidity sensors are installed in individual IAB rooms. The paper describes the proposed method for the determination of occupancy of the monitored area by means of prediction of the course of CO2(ppm) from the measured values of humidity rH(%), indoor temperature Ti(oC) and outdoor temperature To(oC), using the gradient algorithm of back-propagation of error for adaptation of the multilayer feedforward Artificial Neural Network (ANN) in the IAB areas with utilization of the Bayesian regularization method (BRM) to obtain information on the occupancy of individual rooms. The LMS algorithm was used to filter the predicted course in order to determine the occupancy of the monitored areas more precisely. The advantage of the proposed method is the utilization of common operating sensors to obtain information on the state of operational-technical functions in the IAB for the purpose of optimum control of the operational-technical functions of the IAB on the basis of predictable needs of persons using the IAB areas. (C) 2018
Název v anglickém jazyce
Utilization of the LMS Algorithm to Filter the Predicted Course by Means of Neural Networks for Monitoring the Occupancy of Rooms in an Intelligent Administrative Building
Popis výsledku anglicky
For monitoring the occupancy of individual rooms in an intelligent administrative building (IAB), a wide variety of sensors can be used, by means of which the presence of a person in the monitored area can be determined. For a larger administrative-type building, installation of additional sensors means considerable investment costs. As the present-day standard, temperature or also humidity sensors are installed in individual IAB rooms. The paper describes the proposed method for the determination of occupancy of the monitored area by means of prediction of the course of CO2(ppm) from the measured values of humidity rH(%), indoor temperature Ti(oC) and outdoor temperature To(oC), using the gradient algorithm of back-propagation of error for adaptation of the multilayer feedforward Artificial Neural Network (ANN) in the IAB areas with utilization of the Bayesian regularization method (BRM) to obtain information on the occupancy of individual rooms. The LMS algorithm was used to filter the predicted course in order to determine the occupancy of the monitored areas more precisely. The advantage of the proposed method is the utilization of common operating sensors to obtain information on the state of operational-technical functions in the IAB for the purpose of optimum control of the operational-technical functions of the IAB on the basis of predictable needs of persons using the IAB areas. (C) 2018
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000867" target="_blank" >EF16_019/0000867: Centrum výzkumu pokročilých mechatronických systémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IFAC-PapersOnLine. Volume 51
ISSN
2405-8963
e-ISSN
—
Svazek periodika
51
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
6
Strana od-do
378-383
Kód UT WoS článku
000445644900064
EID výsledku v databázi Scopus
2-s2.0-85052901782