Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The design of an indirect method for the human presence monitoring in the intelligent building

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F18%3A10241503" target="_blank" >RIV/61989100:27240/18:10241503 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://hcis-journal.springeropen.com/articles/10.1186/s13673-018-0151-8" target="_blank" >https://hcis-journal.springeropen.com/articles/10.1186/s13673-018-0151-8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1186/s13673-018-0151-8" target="_blank" >10.1186/s13673-018-0151-8</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The design of an indirect method for the human presence monitoring in the intelligent building

  • Popis výsledku v původním jazyce

    This article describes the design and verification of the indirect method of predicting the course of CO2 concentration (ppm) from the measured temperature variables Tindoor (oC) and the relative humidity rHindoor (%) and the temperature Toutdoor (oC) using the Artificial Neural Network (ANN) with the Bayesian Regulation Method (BRM) for monitoring the presence of people in the individual premises in the Intelligent Administrative Building (IAB) using the PI System SW Tool (PI-Plant Information enterprise information system). The CA (Correlation Analysis), the MSE (Root Mean Squared Error) and the DTW (Dynamic Time Warping) criteria were used to verify and classify the results obtained. Within the proposed method, the LMS adaptive filter algorithm was used to remove the noise of the resulting predicted course. In order to verify the method, two long-term experiments were performed, specifically from February 1 to February 28, 2015, from June 1 to June 28, 2015 and from February 8 to February 14, 2015. For the best results of the trained ANN BRM within the prediction of CO2, the correlation coefficient R for the proposed method was up to 92%. The verification of the proposed method confirmed the possibility to use the presence of people of the monitored IAB premises for monitoring. The designed indirect method of CO2 prediction has potential for reducing the investment and operating costs of the IAB in relation to the reduction of the number of implemented sensors in the IAB within the process of management of operational and technical functions in the IAB. The article also describes the design and implementation of the FEIVISUAL visualization application for mobile devices, which monitors the technological processes in the IAB. This application is optimized for Android devices and is platform independent. The application requires implementation of an application server that communicates with the data server and the application developed. The data of the application developed is obtained from the data storage of the PI System via a PI Web REST API (Application Programming Integration) client.

  • Název v anglickém jazyce

    The design of an indirect method for the human presence monitoring in the intelligent building

  • Popis výsledku anglicky

    This article describes the design and verification of the indirect method of predicting the course of CO2 concentration (ppm) from the measured temperature variables Tindoor (oC) and the relative humidity rHindoor (%) and the temperature Toutdoor (oC) using the Artificial Neural Network (ANN) with the Bayesian Regulation Method (BRM) for monitoring the presence of people in the individual premises in the Intelligent Administrative Building (IAB) using the PI System SW Tool (PI-Plant Information enterprise information system). The CA (Correlation Analysis), the MSE (Root Mean Squared Error) and the DTW (Dynamic Time Warping) criteria were used to verify and classify the results obtained. Within the proposed method, the LMS adaptive filter algorithm was used to remove the noise of the resulting predicted course. In order to verify the method, two long-term experiments were performed, specifically from February 1 to February 28, 2015, from June 1 to June 28, 2015 and from February 8 to February 14, 2015. For the best results of the trained ANN BRM within the prediction of CO2, the correlation coefficient R for the proposed method was up to 92%. The verification of the proposed method confirmed the possibility to use the presence of people of the monitored IAB premises for monitoring. The designed indirect method of CO2 prediction has potential for reducing the investment and operating costs of the IAB in relation to the reduction of the number of implemented sensors in the IAB within the process of management of operational and technical functions in the IAB. The article also describes the design and implementation of the FEIVISUAL visualization application for mobile devices, which monitors the technological processes in the IAB. This application is optimized for Android devices and is platform independent. The application requires implementation of an application server that communicates with the data server and the application developed. The data of the application developed is obtained from the data storage of the PI System via a PI Web REST API (Application Programming Integration) client.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20205 - Automation and control systems

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000867" target="_blank" >EF16_019/0000867: Centrum výzkumu pokročilých mechatronických systémů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Human-centric Computing and Information Sciences

  • ISSN

    2192-1962

  • e-ISSN

  • Svazek periodika

    8

  • Číslo periodika v rámci svazku

    28

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    44

  • Strana od-do

    1-44

  • Kód UT WoS článku

    000446242600001

  • EID výsledku v databázi Scopus

    2-s2.0-85054135911