Using Wavelet Transformation for Prediction CO2in Smart Home Care Within IoT for Monitor Activities of Daily Living
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F19%3A10242727" target="_blank" >RIV/61989100:27240/19:10242727 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-030-28374-2_43" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-28374-2_43</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-28374-2_43" target="_blank" >10.1007/978-3-030-28374-2_43</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Using Wavelet Transformation for Prediction CO2in Smart Home Care Within IoT for Monitor Activities of Daily Living
Popis výsledku v původním jazyce
In Smart Home Care (SHC) rooms from the measured operational and technical quantities for monitoring activities of every day of life for support of independent life for elderly people. The proposed algorithm for data processing (predicting the CO2course using neural networks from the measured temperature indoor Ti(oC), temperature outdoor To(oC) and the relative humidity indoor rHi (%)) was applicated, verified and compared in MATLAB SW tool and IBM SPSS SW tool with IoT platform connectivity. In the proposed method, a stationary wavelet transformation algorithm was used to remove the noise of the resulting predicted waveform of expected process. Two long-term experiments were performed (specifically from February 8 to February 15, 2015, from June 8 to June 15, 2015) and two short-term experiments (from February 8, 2015 and from June 8, 2015). For the best results of the trained ANN BRM within the prediction of CO2, the correlation coefficient R for the proposed method was up to 90%. The verification of the proposed method confirmed the possibility to use the presence of people of the monitored SHC premises for rooms ADL monitoring. (C) 2019, Springer Nature Switzerland AG.
Název v anglickém jazyce
Using Wavelet Transformation for Prediction CO2in Smart Home Care Within IoT for Monitor Activities of Daily Living
Popis výsledku anglicky
In Smart Home Care (SHC) rooms from the measured operational and technical quantities for monitoring activities of every day of life for support of independent life for elderly people. The proposed algorithm for data processing (predicting the CO2course using neural networks from the measured temperature indoor Ti(oC), temperature outdoor To(oC) and the relative humidity indoor rHi (%)) was applicated, verified and compared in MATLAB SW tool and IBM SPSS SW tool with IoT platform connectivity. In the proposed method, a stationary wavelet transformation algorithm was used to remove the noise of the resulting predicted waveform of expected process. Two long-term experiments were performed (specifically from February 8 to February 15, 2015, from June 8 to June 15, 2015) and two short-term experiments (from February 8, 2015 and from June 8, 2015). For the best results of the trained ANN BRM within the prediction of CO2, the correlation coefficient R for the proposed method was up to 90%. The verification of the proposed method confirmed the possibility to use the presence of people of the monitored SHC premises for rooms ADL monitoring. (C) 2019, Springer Nature Switzerland AG.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20200 - Electrical engineering, Electronic engineering, Information engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Volume 11684
ISBN
978-3-030-28373-5
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
10
Strana od-do
500-509
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Hendaye
Datum konání akce
4. 9. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—