Application of a new CO2 prediction method within family house occupancy monitoring
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F21%3A10248279" target="_blank" >RIV/61989100:27240/21:10248279 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/abstract/document/9625007" target="_blank" >https://ieeexplore.ieee.org/abstract/document/9625007</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2021.3130216" target="_blank" >10.1109/ACCESS.2021.3130216</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Application of a new CO2 prediction method within family house occupancy monitoring
Popis výsledku v původním jazyce
The article describes the application of Python for verification of a newly designed method of CO2 prediction from measurements of indoor parameters of temperature and relative humidity within occupancy monitoring in real conditions of a family home. The article describes the implementation of non-electric quantities (indoor CO2 concentration, indoor temperature, indoor relative humidity) measurement in five rooms of a family home (living room, kitchen, children's room, bathroom, bedroom) using Loxone technology sensors. The IBM IoT (Internet Of Things) was used for storing and subsequent processing of the measured values within the time interval of December 22, 2018, to December 31, 2018. The devised method used radial basis function (artificial neural networks (ANN)) mathematical method (implementation in Python environment) to perform accurate predictions. For further increase of the accuracy and reduction of prediction noise from the obtained course of the predicted signal, multiple variations of the LMS adaptive filter algorithm (Sign, Sign-Sign, Sign-Regressor) were used (implemented in the MATLAB SW tool). The accuracy of the newly proposed CO2 concentration prediction method exceeds 95% in the selected experiments.
Název v anglickém jazyce
Application of a new CO2 prediction method within family house occupancy monitoring
Popis výsledku anglicky
The article describes the application of Python for verification of a newly designed method of CO2 prediction from measurements of indoor parameters of temperature and relative humidity within occupancy monitoring in real conditions of a family home. The article describes the implementation of non-electric quantities (indoor CO2 concentration, indoor temperature, indoor relative humidity) measurement in five rooms of a family home (living room, kitchen, children's room, bathroom, bedroom) using Loxone technology sensors. The IBM IoT (Internet Of Things) was used for storing and subsequent processing of the measured values within the time interval of December 22, 2018, to December 31, 2018. The devised method used radial basis function (artificial neural networks (ANN)) mathematical method (implementation in Python environment) to perform accurate predictions. For further increase of the accuracy and reduction of prediction noise from the obtained course of the predicted signal, multiple variations of the LMS adaptive filter algorithm (Sign, Sign-Sign, Sign-Regressor) were used (implemented in the MATLAB SW tool). The accuracy of the newly proposed CO2 concentration prediction method exceeds 95% in the selected experiments.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_049%2F0008425" target="_blank" >EF17_049/0008425: Platforma pro výzkum orientovaný na Průmysl 4.0 a robotiku v ostravské aglomeraci</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
—
Kód UT WoS článku
000749364300001
EID výsledku v databázi Scopus
2-s2.0-85120045140