Wavelet-Based Filtration Procedure for Denoising the Predicted CO2 Waveforms in Smart Home within the Internet of Things
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F20%3A10243935" target="_blank" >RIV/61989100:27240/20:10243935 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/1424-8220/20/3/620/htm" target="_blank" >https://www.mdpi.com/1424-8220/20/3/620/htm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/s20030620" target="_blank" >10.3390/s20030620</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Wavelet-Based Filtration Procedure for Denoising the Predicted CO2 Waveforms in Smart Home within the Internet of Things
Popis výsledku v původním jazyce
The operating cost minimization of smart homes can be achieved with the optimization of the management of the building's technical functions by determination of the current occupancy status of the individual monitored spaces of a smart home. To respect the privacy of the smart home residents, indirect methods (without using cameras and microphones) are possible for occupancy recognition of space in smart homes. This article describes a newly proposed indirect method to increase the accuracy of the occupancy recognition of monitored spaces of smart homes. The proposed procedure uses the prediction of the course of CO2 concentration from operationally measured quantities (temperature indoor and relative humidity indoor) using artificial neural networks with a multilayer perceptron algorithm. The mathematical wavelet transformation method is used for additive noise canceling from the predicted course of the CO2 concentration signal with an objective increase accuracy of the prediction. The calculated accuracy of CO2 concentration waveform prediction in the additive noise-canceling application was higher than 98% in selected experiments.
Název v anglickém jazyce
Wavelet-Based Filtration Procedure for Denoising the Predicted CO2 Waveforms in Smart Home within the Internet of Things
Popis výsledku anglicky
The operating cost minimization of smart homes can be achieved with the optimization of the management of the building's technical functions by determination of the current occupancy status of the individual monitored spaces of a smart home. To respect the privacy of the smart home residents, indirect methods (without using cameras and microphones) are possible for occupancy recognition of space in smart homes. This article describes a newly proposed indirect method to increase the accuracy of the occupancy recognition of monitored spaces of smart homes. The proposed procedure uses the prediction of the course of CO2 concentration from operationally measured quantities (temperature indoor and relative humidity indoor) using artificial neural networks with a multilayer perceptron algorithm. The mathematical wavelet transformation method is used for additive noise canceling from the predicted course of the CO2 concentration signal with an objective increase accuracy of the prediction. The calculated accuracy of CO2 concentration waveform prediction in the additive noise-canceling application was higher than 98% in selected experiments.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000867" target="_blank" >EF16_019/0000867: Centrum výzkumu pokročilých mechatronických systémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Sensors (Basel, Switzerland)
ISSN
1424-8220
e-ISSN
—
Svazek periodika
20
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
26
Strana od-do
1-26
Kód UT WoS článku
000517786200044
EID výsledku v databázi Scopus
2-s2.0-85078280138