Multiregional Soft Segmentation Driven by Modified ABC Algorithm and Completed by Spatial Aggregation: Volumetric, Spatial Modelling and Features Extraction of Articular Cartilage Early Loss
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F18%3A10241593" target="_blank" >RIV/61989100:27240/18:10241593 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-319-75420-8_37" target="_blank" >http://dx.doi.org/10.1007/978-3-319-75420-8_37</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-75420-8_37" target="_blank" >10.1007/978-3-319-75420-8_37</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multiregional Soft Segmentation Driven by Modified ABC Algorithm and Completed by Spatial Aggregation: Volumetric, Spatial Modelling and Features Extraction of Articular Cartilage Early Loss
Popis výsledku v původním jazyce
In a clinical practise of the orthopaedics and medical imaging systems, the early cartilage loss, and cartilage lesions are challenging tasks. Due to an insufficient contrast, such pathologies are badly observable by naked eyes. Furthermore, objectification and quantification of those pathological findings are usually only subjectively estimated without the SW support. We propose a multiregional segmentation model based on the histogram classification with using of a sequence of triangular fuzzy functions where each such function represents specific knee area. To ensure a robustness of the model, respective fuzzy class location is driven by the ABC (Artificial Bee Colony) genetic algorithm respecting statistical features of the physiological cartilage. In the second step of the algorithm, a spatial aggregation is applied in order to consider spatial relationships in every region to prevent the image noise deterioration. Such multiregional segmentation model allows for an extraction of significant features well corresponding with the early cartilage loss like is the cartilage volume.
Název v anglickém jazyce
Multiregional Soft Segmentation Driven by Modified ABC Algorithm and Completed by Spatial Aggregation: Volumetric, Spatial Modelling and Features Extraction of Articular Cartilage Early Loss
Popis výsledku anglicky
In a clinical practise of the orthopaedics and medical imaging systems, the early cartilage loss, and cartilage lesions are challenging tasks. Due to an insufficient contrast, such pathologies are badly observable by naked eyes. Furthermore, objectification and quantification of those pathological findings are usually only subjectively estimated without the SW support. We propose a multiregional segmentation model based on the histogram classification with using of a sequence of triangular fuzzy functions where each such function represents specific knee area. To ensure a robustness of the model, respective fuzzy class location is driven by the ABC (Artificial Bee Colony) genetic algorithm respecting statistical features of the physiological cartilage. In the second step of the algorithm, a spatial aggregation is applied in order to consider spatial relationships in every region to prevent the image noise deterioration. Such multiregional segmentation model allows for an extraction of significant features well corresponding with the early cartilage loss like is the cartilage volume.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-03037S" target="_blank" >GA17-03037S: Hodnocení investic do vývoje zdravotních prostředků</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Volume 10752
ISBN
978-3-319-75419-2
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
10
Strana od-do
385-394
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Dong Hoi
Datum konání akce
19. 3. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000453510500037