Fuzzy Segmentation Driven by Modified ABC Algorithm Using Cartilage Features Completed by Spatial Aggregation: Modeling of Early Cartilage Loss
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F18%3A10241594" target="_blank" >RIV/61989100:27240/18:10241594 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-319-98446-9_45" target="_blank" >http://dx.doi.org/10.1007/978-3-319-98446-9_45</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-98446-9_45" target="_blank" >10.1007/978-3-319-98446-9_45</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fuzzy Segmentation Driven by Modified ABC Algorithm Using Cartilage Features Completed by Spatial Aggregation: Modeling of Early Cartilage Loss
Popis výsledku v původním jazyce
In a clinical practice of the orthopedics, the articular cartilage assessment is one of the major clinical procedures serving as a predictor of the future cartilage loss development. The early stage of the cartilage osteoarthritis is badly observable from the native MR records due to weak contrast between the physiological cartilage and the osteoarthritic spots. Therefore, the cartilage regional modeling would reliably differentiate the physiological cartilage from the early cartilage deterioration, and can serve as an effective clinical tool. In a comparison with the conventional segmentation methods based on the hard thresholding, the soft fuzzy thresholding based on the histogram separation into segmentation classes via the fuzzy triangular functions represents a sensitive regional segmentation even in the non-contrast environment. We have proposed the soft segmentation where the fuzzy sets are driven by the ABC genetic algorithm to optimal fuzzy class's distribution regarding the knee tissues characteristics. Consequently, the spatial aggregation is employed to taking advantage the spatial dependences which allows for modification the original fuzzy membership function. This procedure ensures the correct pixel's classification especially when the noise pixels are present. Such multiregional segmentation makes a mathematical model well separating the physiological cartilage from the early osteoarthritic spots which are highlighted in the model.
Název v anglickém jazyce
Fuzzy Segmentation Driven by Modified ABC Algorithm Using Cartilage Features Completed by Spatial Aggregation: Modeling of Early Cartilage Loss
Popis výsledku anglicky
In a clinical practice of the orthopedics, the articular cartilage assessment is one of the major clinical procedures serving as a predictor of the future cartilage loss development. The early stage of the cartilage osteoarthritis is badly observable from the native MR records due to weak contrast between the physiological cartilage and the osteoarthritic spots. Therefore, the cartilage regional modeling would reliably differentiate the physiological cartilage from the early cartilage deterioration, and can serve as an effective clinical tool. In a comparison with the conventional segmentation methods based on the hard thresholding, the soft fuzzy thresholding based on the histogram separation into segmentation classes via the fuzzy triangular functions represents a sensitive regional segmentation even in the non-contrast environment. We have proposed the soft segmentation where the fuzzy sets are driven by the ABC genetic algorithm to optimal fuzzy class's distribution regarding the knee tissues characteristics. Consequently, the spatial aggregation is employed to taking advantage the spatial dependences which allows for modification the original fuzzy membership function. This procedure ensures the correct pixel's classification especially when the noise pixels are present. Such multiregional segmentation makes a mathematical model well separating the physiological cartilage from the early osteoarthritic spots which are highlighted in the model.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-03037S" target="_blank" >GA17-03037S: Hodnocení investic do vývoje zdravotních prostředků</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Volume 11056
ISBN
978-3-319-98445-2
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
10
Strana od-do
479-488
Název nakladatele
Elsevier
Místo vydání
Oxford
Místo konání akce
Bristol
Datum konání akce
5. 9. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000458812900045