Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Guided Genetic Algorithm for Information Diffusion Problems

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F18%3A10241706" target="_blank" >RIV/61989100:27240/18:10241706 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/8477835" target="_blank" >https://ieeexplore.ieee.org/document/8477835</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/CEC.2018.8477835" target="_blank" >10.1109/CEC.2018.8477835</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Guided Genetic Algorithm for Information Diffusion Problems

  • Popis výsledku v původním jazyce

    Information diffusion is a process that involves the propagation of an arbitrary signal (message) in an environment. In the area of social networks, it is often associated with influence maximization. Influence maximization consists in the search for an optimum set of k network nodes (seed sets) that trigger the activation of a maximum total number of remaining network nodes according to a chosen propagation model. It is an attractive research topic due to its well-known difficulty and many practical applications. Influence maximization can be used in various areas spanning from social network analysis and data mining to practical applications such as viral marketing and opinion making. Formally, it can be formulated as a subset selection problem. Because of the proven hardness of the influence maximization problem, many metaheuristic and evolutionary methods have been proposed to tackle it. This paper presents and evaluates a new genetic algorithm for influence maximization. It is based on a recent genetic algorithm for fixed-length subset selection and takes advantage of the knowledge of the environment. The evolutionary algorithm is in this approach executed with respect to network properties and the probability that vertices with chosen properties are selected is increased. The experiments show that this approach improves the results of the evolutionary procedure and leads to the discovery of better seed sets.

  • Název v anglickém jazyce

    Guided Genetic Algorithm for Information Diffusion Problems

  • Popis výsledku anglicky

    Information diffusion is a process that involves the propagation of an arbitrary signal (message) in an environment. In the area of social networks, it is often associated with influence maximization. Influence maximization consists in the search for an optimum set of k network nodes (seed sets) that trigger the activation of a maximum total number of remaining network nodes according to a chosen propagation model. It is an attractive research topic due to its well-known difficulty and many practical applications. Influence maximization can be used in various areas spanning from social network analysis and data mining to practical applications such as viral marketing and opinion making. Formally, it can be formulated as a subset selection problem. Because of the proven hardness of the influence maximization problem, many metaheuristic and evolutionary methods have been proposed to tackle it. This paper presents and evaluates a new genetic algorithm for influence maximization. It is based on a recent genetic algorithm for fixed-length subset selection and takes advantage of the knowledge of the environment. The evolutionary algorithm is in this approach executed with respect to network properties and the probability that vertices with chosen properties are selected is increased. The experiments show that this approach improves the results of the evolutionary procedure and leads to the discovery of better seed sets.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GJ16-25694Y" target="_blank" >GJ16-25694Y: Mnohoparadigmatické algoritmy dolování z dat založené na vyhledávání, fuzzy technologiích a bio-inspirovaných výpočtech</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    2018 IEEE Congress on Evolutionary Computation, CEC 2018 - Proceedings

  • ISBN

    978-1-5090-6017-7

  • ISSN

  • e-ISSN

    neuvedeno

  • Počet stran výsledku

    8

  • Strana od-do

    1722-1729

  • Název nakladatele

    IEEE

  • Místo vydání

    Piscataway

  • Místo konání akce

    Rio de Janeiro

  • Datum konání akce

    8. 7. 2018

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000451175500220