Guided Genetic Algorithm for Information Diffusion Problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F18%3A10241706" target="_blank" >RIV/61989100:27240/18:10241706 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/8477835" target="_blank" >https://ieeexplore.ieee.org/document/8477835</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CEC.2018.8477835" target="_blank" >10.1109/CEC.2018.8477835</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Guided Genetic Algorithm for Information Diffusion Problems
Popis výsledku v původním jazyce
Information diffusion is a process that involves the propagation of an arbitrary signal (message) in an environment. In the area of social networks, it is often associated with influence maximization. Influence maximization consists in the search for an optimum set of k network nodes (seed sets) that trigger the activation of a maximum total number of remaining network nodes according to a chosen propagation model. It is an attractive research topic due to its well-known difficulty and many practical applications. Influence maximization can be used in various areas spanning from social network analysis and data mining to practical applications such as viral marketing and opinion making. Formally, it can be formulated as a subset selection problem. Because of the proven hardness of the influence maximization problem, many metaheuristic and evolutionary methods have been proposed to tackle it. This paper presents and evaluates a new genetic algorithm for influence maximization. It is based on a recent genetic algorithm for fixed-length subset selection and takes advantage of the knowledge of the environment. The evolutionary algorithm is in this approach executed with respect to network properties and the probability that vertices with chosen properties are selected is increased. The experiments show that this approach improves the results of the evolutionary procedure and leads to the discovery of better seed sets.
Název v anglickém jazyce
Guided Genetic Algorithm for Information Diffusion Problems
Popis výsledku anglicky
Information diffusion is a process that involves the propagation of an arbitrary signal (message) in an environment. In the area of social networks, it is often associated with influence maximization. Influence maximization consists in the search for an optimum set of k network nodes (seed sets) that trigger the activation of a maximum total number of remaining network nodes according to a chosen propagation model. It is an attractive research topic due to its well-known difficulty and many practical applications. Influence maximization can be used in various areas spanning from social network analysis and data mining to practical applications such as viral marketing and opinion making. Formally, it can be formulated as a subset selection problem. Because of the proven hardness of the influence maximization problem, many metaheuristic and evolutionary methods have been proposed to tackle it. This paper presents and evaluates a new genetic algorithm for influence maximization. It is based on a recent genetic algorithm for fixed-length subset selection and takes advantage of the knowledge of the environment. The evolutionary algorithm is in this approach executed with respect to network properties and the probability that vertices with chosen properties are selected is increased. The experiments show that this approach improves the results of the evolutionary procedure and leads to the discovery of better seed sets.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ16-25694Y" target="_blank" >GJ16-25694Y: Mnohoparadigmatické algoritmy dolování z dat založené na vyhledávání, fuzzy technologiích a bio-inspirovaných výpočtech</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2018 IEEE Congress on Evolutionary Computation, CEC 2018 - Proceedings
ISBN
978-1-5090-6017-7
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
8
Strana od-do
1722-1729
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Rio de Janeiro
Datum konání akce
8. 7. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000451175500220