Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Guided genetic algorithm for the influence maximization problem

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F17%3A10238700" target="_blank" >RIV/61989100:27240/17:10238700 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/chapter/10.1007%2F978-3-319-62389-4_52" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-319-62389-4_52</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-62389-4_52" target="_blank" >10.1007/978-3-319-62389-4_52</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Guided genetic algorithm for the influence maximization problem

  • Popis výsledku v původním jazyce

    Influence maximization is a hard combinatorial optimization problem. It requires the identification of an optimum set of k network vertices that triggers the activation of a maximum total number of remaining network nodes with respect to a chosen propagation model. The problem is appealing because it is provably hard and has a number of practical applications in domains such as data mining and social network analysis. Although there are many exact and heuristic algorithms for influence maximization, it has been tackled by metaheuristic and evolutionary methods as well. This paper presents and evaluates a new evolutionary method for influence maximization that employs a recent genetic algorithm for fixed–length subset selection. The algorithm is extended by the concept of guiding that prevents selection of infeasible vertices, reduces the search space, and effectively improves the evolutionary procedure. © 2017, Springer International Publishing AG.

  • Název v anglickém jazyce

    Guided genetic algorithm for the influence maximization problem

  • Popis výsledku anglicky

    Influence maximization is a hard combinatorial optimization problem. It requires the identification of an optimum set of k network vertices that triggers the activation of a maximum total number of remaining network nodes with respect to a chosen propagation model. The problem is appealing because it is provably hard and has a number of practical applications in domains such as data mining and social network analysis. Although there are many exact and heuristic algorithms for influence maximization, it has been tackled by metaheuristic and evolutionary methods as well. This paper presents and evaluates a new evolutionary method for influence maximization that employs a recent genetic algorithm for fixed–length subset selection. The algorithm is extended by the concept of guiding that prevents selection of infeasible vertices, reduces the search space, and effectively improves the evolutionary procedure. © 2017, Springer International Publishing AG.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA15-06700S" target="_blank" >GA15-06700S: Nekonvenční řízení komplexních systémů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Volume 10392

  • ISBN

    978-3-319-62388-7

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Počet stran výsledku

    12

  • Strana od-do

    630-641

  • Název nakladatele

    Springer

  • Místo vydání

    Cham

  • Místo konání akce

    Hongkong

  • Datum konání akce

    3. 8. 2017

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku