Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Large-dimensionality small-instance set feature selection: A hybrid bio-inspired heuristic approach

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F18%3A10241746" target="_blank" >RIV/61989100:27240/18:10241746 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://reader.elsevier.com/reader/sd/pii/S2210650216303042?token=542D17B5F4CE16DB9A9E5E17C8D447F364F9C65D9AE8A862748ADFE650DB2D83FF8B210E6955EA4F85CB77A8E011D848" target="_blank" >https://reader.elsevier.com/reader/sd/pii/S2210650216303042?token=542D17B5F4CE16DB9A9E5E17C8D447F364F9C65D9AE8A862748ADFE650DB2D83FF8B210E6955EA4F85CB77A8E011D848</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.swevo.2018.02.021" target="_blank" >10.1016/j.swevo.2018.02.021</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Large-dimensionality small-instance set feature selection: A hybrid bio-inspired heuristic approach

  • Popis výsledku v původním jazyce

    Selection of a representative set of features is still a crucial and challenging problem in machine learning. The complexity of the problem increases when any of the following situations occur: a very large number of attributes (large dimensionality); a very small number of instances or time points (small-instance set). The first situation poses problems for machine learning algorithm as the search space for selecting a combination of relevant features becomes impossible to explore in a reasonable time and with reasonable computational resources. The second aspect poses the problem of having insufficient data to learn from (insufficient examples). In this work, we approach both these issues at the same time. The methods we proposed are heuristics inspired by nature (in particular, by biology). We propose a hybrid of two methods which has the advantage of providing a good learning from fewer examples and a fair selection of features from a really large set, all these while ensuring a high standard classification accuracy of the data. The methods used are antlion optimization (ALO), grey wolf optimization (GWO), and a combination of the two (ALO-GWO). We test their performance on datasets having almost 50,000 features and less than 200 instances. The results look promising while compared with other methods such as genetic algorithms (GA) and particle swarm optimization (PSO).

  • Název v anglickém jazyce

    Large-dimensionality small-instance set feature selection: A hybrid bio-inspired heuristic approach

  • Popis výsledku anglicky

    Selection of a representative set of features is still a crucial and challenging problem in machine learning. The complexity of the problem increases when any of the following situations occur: a very large number of attributes (large dimensionality); a very small number of instances or time points (small-instance set). The first situation poses problems for machine learning algorithm as the search space for selecting a combination of relevant features becomes impossible to explore in a reasonable time and with reasonable computational resources. The second aspect poses the problem of having insufficient data to learn from (insufficient examples). In this work, we approach both these issues at the same time. The methods we proposed are heuristics inspired by nature (in particular, by biology). We propose a hybrid of two methods which has the advantage of providing a good learning from fewer examples and a fair selection of features from a really large set, all these while ensuring a high standard classification accuracy of the data. The methods used are antlion optimization (ALO), grey wolf optimization (GWO), and a combination of the two (ALO-GWO). We test their performance on datasets having almost 50,000 features and less than 200 instances. The results look promising while compared with other methods such as genetic algorithms (GA) and particle swarm optimization (PSO).

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Swarm and Evolutionary Computation

  • ISSN

    2210-6502

  • e-ISSN

  • Svazek periodika

    42

  • Číslo periodika v rámci svazku

    October

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    14

  • Strana od-do

    29-42

  • Kód UT WoS článku

    000445716200003

  • EID výsledku v databázi Scopus

    2-s2.0-85043393542