Q-learning Algorithm for Energy Management in Solar Powered Embedded Monitoring Systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F18%3A10241784" target="_blank" >RIV/61989100:27240/18:10241784 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/abstract/document/8477781" target="_blank" >https://ieeexplore.ieee.org/abstract/document/8477781</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CEC.2018.8477781" target="_blank" >10.1109/CEC.2018.8477781</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Q-learning Algorithm for Energy Management in Solar Powered Embedded Monitoring Systems
Popis výsledku v původním jazyce
Environmental changes have become a considerable issue over the past years. To be able to continuously monitor such variations in the environment, it is convenient to employ so-called Environmental Monitoring Systems (EMS) that can be deployed in remote places of interest, and that are capable of measuring multiple ambient characteristics. However, supplying EMS with power in a long term to prevent blackouts is challenging. This paper introduces an energy management method based on Reinforcement Learning algorithm, particularly Q-learning. The EMS described in this study needs to meet a set of strict requirements, e.g. low power consumption, high reliability, self-sustainability with respect to power supply, backup of data acquired through the measurements in case of an unexpected failure and many others. The energy is harvested using solar panels and stored in supercapacitors. In addition, the implementation of a complex algorithm is not suitable for such a system, considering the energy constraints. The solution to the above mentioned challenges is described in this study. The findings were implemented in a physical EMS device, and subsequently tested in field so as to acquire real-life data.
Název v anglickém jazyce
Q-learning Algorithm for Energy Management in Solar Powered Embedded Monitoring Systems
Popis výsledku anglicky
Environmental changes have become a considerable issue over the past years. To be able to continuously monitor such variations in the environment, it is convenient to employ so-called Environmental Monitoring Systems (EMS) that can be deployed in remote places of interest, and that are capable of measuring multiple ambient characteristics. However, supplying EMS with power in a long term to prevent blackouts is challenging. This paper introduces an energy management method based on Reinforcement Learning algorithm, particularly Q-learning. The EMS described in this study needs to meet a set of strict requirements, e.g. low power consumption, high reliability, self-sustainability with respect to power supply, backup of data acquired through the measurements in case of an unexpected failure and many others. The energy is harvested using solar panels and stored in supercapacitors. In addition, the implementation of a complex algorithm is not suitable for such a system, considering the energy constraints. The solution to the above mentioned challenges is described in this study. The findings were implemented in a physical EMS device, and subsequently tested in field so as to acquire real-life data.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000867" target="_blank" >EF16_019/0000867: Centrum výzkumu pokročilých mechatronických systémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2018 IEEE Congress on Evolutionary Computation, CEC 2018 - Proceedings
ISBN
978-1-5090-6017-7
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
7
Strana od-do
1068-1074
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Rio de Janeiro
Datum konání akce
8. 7. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000451175500138