Simulation of a Daytime-Based Q-Learning Control Strategy for Environmental Harvesting WSN Nodes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F20%3A10246780" target="_blank" >RIV/61989100:27240/20:10246780 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-030-50097-9_44" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-50097-9_44</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-50097-9_44" target="_blank" >10.1007/978-3-030-50097-9_44</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Simulation of a Daytime-Based Q-Learning Control Strategy for Environmental Harvesting WSN Nodes
Popis výsledku v původním jazyce
Environmental wireless sensor networks (EWSN) are designed to collect environmental data in remote locations where maintenance options are limited. It is therefore essential for the system to make a good use of the available energy so as to operate efficiently. This paper describes a simulation framework of an EWSN node, which allows to simulate various configurations and parameters before implementing the control system in a physical hardware model, which was developed in our previous study. System operation, namely environmental data acquisition and subsequent data transmission to a network, is governed by a model-free Q-learning algorithm, which do not have any prior knowledge of its environment. Real-life historical meteorological data acquired in the years 2008-2012 in Canada was used to test the capabilities of the control algorithm. The results show that setting of the learning rate is crucial to EWSN node's performance. When set improperly, the system tends to fail to operate by depleting its energy storage. One of the aspects to consider when improving the algorithm is to reduce the amount of wasted harvested energy. This could be done through tuning of the Q-learning reward signal.
Název v anglickém jazyce
Simulation of a Daytime-Based Q-Learning Control Strategy for Environmental Harvesting WSN Nodes
Popis výsledku anglicky
Environmental wireless sensor networks (EWSN) are designed to collect environmental data in remote locations where maintenance options are limited. It is therefore essential for the system to make a good use of the available energy so as to operate efficiently. This paper describes a simulation framework of an EWSN node, which allows to simulate various configurations and parameters before implementing the control system in a physical hardware model, which was developed in our previous study. System operation, namely environmental data acquisition and subsequent data transmission to a network, is governed by a model-free Q-learning algorithm, which do not have any prior knowledge of its environment. Real-life historical meteorological data acquired in the years 2008-2012 in Canada was used to test the capabilities of the control algorithm. The results show that setting of the learning rate is crucial to EWSN node's performance. When set improperly, the system tends to fail to operate by depleting its energy storage. One of the aspects to consider when improving the algorithm is to reduce the amount of wasted harvested energy. This could be done through tuning of the Q-learning reward signal.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000867" target="_blank" >EF16_019/0000867: Centrum výzkumu pokročilých mechatronických systémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in Intelligent Systems and Computing. Volume 1156
ISBN
978-3-030-50096-2
ISSN
2194-5357
e-ISSN
2194-5365
Počet stran výsledku
10
Strana od-do
432-441
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Ostrava
Datum konání akce
2. 12. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000590145400044