Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Optimizing of Q-learning day/night energy strategy for solar harvesting environmental wireless sensor networks nodes

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F21%3A10248101" target="_blank" >RIV/61989100:27240/21:10248101 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.eejournal.ktu.lt/index.php/elt/article/view/28875" target="_blank" >https://www.eejournal.ktu.lt/index.php/elt/article/view/28875</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5755/j02.eie.28875" target="_blank" >10.5755/j02.eie.28875</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Optimizing of Q-learning day/night energy strategy for solar harvesting environmental wireless sensor networks nodes

  • Popis výsledku v původním jazyce

    This research article presents the application of the Q-learning algorithm in the operational duty cycle control of solar-powered environmental wireless sensor network (EWSN) nodes. Those nodes are commonly implemented as embedded devices using low-power and low-cost microcontrollers. Therefore, there is a significant need for an effective and easy way to implement a machine learning (ML) algorithm in terms of computer performance. This approach uses a Q-learning-based policy implementing a sleep/run switching algorithm driven by the state of charge. The presented algorithm is based on two modes: daylight and nighttime, which is a suitable solution for solar-powered systems. The study includes the complete process of design EWSN node strategy with an optimal reward policy. The presented algorithm was tested and verified on an EWSN node model and a 5-year data set of solar irradiance values was used for the learning process and its validation. As part of the study, we are also presenting the validation in terms of Q-learning parameters, which include the learning rate and discount factor. The result section shows that the overall performance of the presented solution is more suitable for solar-powered EWSN then state-of-the-art studies. Both day/night experiments reached 828 203 measurement/transmission cycles, which is 12.7 % more than in the previous studies using the strategy defined by the state of energy storage. (C) 2021 Kauno Technologijos Universitetas. All rights reserved.

  • Název v anglickém jazyce

    Optimizing of Q-learning day/night energy strategy for solar harvesting environmental wireless sensor networks nodes

  • Popis výsledku anglicky

    This research article presents the application of the Q-learning algorithm in the operational duty cycle control of solar-powered environmental wireless sensor network (EWSN) nodes. Those nodes are commonly implemented as embedded devices using low-power and low-cost microcontrollers. Therefore, there is a significant need for an effective and easy way to implement a machine learning (ML) algorithm in terms of computer performance. This approach uses a Q-learning-based policy implementing a sleep/run switching algorithm driven by the state of charge. The presented algorithm is based on two modes: daylight and nighttime, which is a suitable solution for solar-powered systems. The study includes the complete process of design EWSN node strategy with an optimal reward policy. The presented algorithm was tested and verified on an EWSN node model and a 5-year data set of solar irradiance values was used for the learning process and its validation. As part of the study, we are also presenting the validation in terms of Q-learning parameters, which include the learning rate and discount factor. The result section shows that the overall performance of the presented solution is more suitable for solar-powered EWSN then state-of-the-art studies. Both day/night experiments reached 828 203 measurement/transmission cycles, which is 12.7 % more than in the previous studies using the strategy defined by the state of energy storage. (C) 2021 Kauno Technologijos Universitetas. All rights reserved.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20205 - Automation and control systems

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000867" target="_blank" >EF16_019/0000867: Centrum výzkumu pokročilých mechatronických systémů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Elektronika ir elektrotechnika

  • ISSN

    1392-1215

  • e-ISSN

  • Svazek periodika

    27

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    LT - Litevská republika

  • Počet stran výsledku

    7

  • Strana od-do

    50-56

  • Kód UT WoS článku

    000668351900005

  • EID výsledku v databázi Scopus

    2-s2.0-85108971347